Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 763: 143038, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127157

RESUMEN

Daphnia magna is one of the most commonly used model organism to assess toxicity of wide range of pharmaceuticals such as antibiotics, anticancer drugs, antidepressants, anti-inflammatory drugs, beta-blockers and lipid-regulating agents. Currently, daphnia toxicity tests based on immobilisation and lethality standardised by OECD, acute immobilisation test and reproduction test, are mainly used in toxicological studies. Detailed analysis of Daphnia biology allows distinguishing the swimming behaviour and physiological endpoints such as swimming speed, distance travelled, hopping frequency, heart rate, ingestion rate, feeding rate, oxygen consumption, thoracic limb activity which could be also useful in assessment of toxic effects. The advantage of behavioural and physiological parameters is the possibility to observe sublethal effects induced by lower concentrations of pharmaceuticals which would not be possible to notice by using OECD tests. Additionally, toxic effects of tested drugs could be assessed using enzymatic and non-enzymatic biomarkers of daphnia toxicity. This review presents scientific data considering characteristics of D. magna, analysis of immobilisation, lethality, reproductive, behavioural, physiological and biochemical parameters used in the toxicity assessment of pharmaceuticals. The aim of this paper is also to emphasize usefulness, advantages and disadvantages of these invertebrate model organisms to assess toxicity of different therapeutic classes of pharmaceuticals. Also, various examples of application of D. magna in studies on pharmaceutical toxicity are presented.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Daphnia , Reproducción , Natación , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218217

RESUMEN

This is the first study in which the Daphnia magna (D. magna) nuclear genome (nDNA) obtained from the GenBank database was analyzed for pseudogene sequences of mitochondrial origin. To date, there is no information about pseudogenes localized in D. magna genome. This study aimed to identify NUMTs, their length, homology, and location for potential use in evolutionary studies and to check whether their occurrence causes co-amplification during mitochondrial genome (mtDNA) analyses. Bioinformatic analysis showed 1909 fragments of the mtDNA of D. magna, of which 1630 were located in ten linkage groups (LG) of the nDNA. The best-matched NUMTs covering >90% of the gene sequence have been identified for two mt-tRNA genes, and they may be functional nuclear RNA molecules. Isolating the total DNA in mtDNA studies, co-amplification of nDNA fragments is unlikely in the case of amplification of the whole tRNA genes as well as fragments of other genes. It was observed that TRNA-MET fragments had the highest level of sequence homology, thus they could be evolutionarily the youngest. The lowest homology was found in the D-loop-derived pseudogene. It may probably be the oldest NUMT incorporated into the nDNA; however, further analysis is necessary.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Daphnia/genética , Genoma Mitocondrial/genética , Genoma/genética , Animales , Genes Mitocondriales/genética , Mitocondrias/genética , Seudogenes/genética , ARN de Transferencia/genética , Análisis de Secuencia de ADN/métodos
3.
Animals (Basel) ; 10(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290485

RESUMEN

: The information about mtDNA methylation is still limited, thus epigenetic modification remains unclear. The lack of comprehensive information on the comparative epigenomics of mtDNA prompts comprehensive investigations of the epigenomic modification of mtDNA in different species. This is the first study in which the theoretical CpG localization in the mtDNA reference sequences from various species (12) was compared. The aim of the study was to determine the localization of CpG sites and islands in mtDNA of model organisms and to compare their distribution. The results are suitable for further investigations of mtDNA methylation. The analysis involved both strands of mtDNA sequences of animal model organisms representing different taxonomic groups of invertebrates and vertebrates. For each sequence, such parameters as the number, length, and localization of CpG islands were determined with the use of EMBOSS (European Molecular Biology Open Software Suite) software. The number of CpG sites for each sequence was indicated using the newcpgseek algorithm. The results showed that methylation of mtDNA in the analysed species involved mitochondrial gene expression. Our analyses showed that the CpG sites were commonly present in genomic regions including the D-loop, CYTB, ND6, ND5, ND4, ND3, ND2, ND1, COX3, COX2, COX1, ATP6, 16s rRNA, and 12s rRNA. The CpG distribution in animals from different species was diversified. Generally, the number of observed CpG sites of the mitochondrial genome was higher in the vertebrates than in the invertebrates. However, there was no relationship between the frequency of the CpG sites in the mitochondrial genome and the complexity of the analysed organisms. Interestingly, the distribution of the CpG sites for tRNA coding genes was usually cumulated in a larger CpG region in vertebrates. This paper may be a starting point for further research, since the collected information indicates possible methylation regions localized in mtDNA among different species including invertebrates and vertebrates.

4.
Sci Total Environ ; 717: 137222, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084689

RESUMEN

In recent years interest in the fate of chemical compounds in the aquatic environment has increased. There are many reports of the presence of chemical compounds such as pesticides, steroid hormones or antibiotics in the aquatic environment. At present, little is known about synthetic organic dyes as contaminants of water bodies. These dyes are omnipresent in many application areas from the textile, tannery, cosmetic and food industries to human and veterinary medicine. Their large-scale production and widespread applications have caused synthetic organic dyes to permeate into different compartments of water and soil environment. So far, dyes have been determined in environmental samples such as water, suspended particulate matters, sediment and wild fish. For this reason, they are considered micropollutants of aquatic ecosystems. Due to the toxicological properties and pharmacological activity of some synthetic organic dyes their occurrence in water bodies should be monitored. The hazard potential of synthetic organic dyes should be assessed, especially their influence on aquatic biota, not least because dyes in water ecosystems may pose a threat to animal or human health as higher-order consumers. This review collects scientific data considering application areas, toxicity, sources, environmental occurrence and the fate of synthetic organic dyes and the ecological implications of synthetic organic dyes presence in the total environment. Moreover, analytical methods for dye determination and methods for dye removal from wastewater are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA