Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201300

RESUMEN

Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Receptor Toll-Like 9 , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Carcinogénesis , Próstata , Transformación Celular Neoplásica
2.
PLoS Pathog ; 18(8): e1010703, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35930608

RESUMEN

Influenza A virus (IAV) infection during pregnancy initiates significant aortic endothelial and vascular smooth muscle dysfunction, with inflammation and T cell activation, but the details of the mechanism are yet to be clearly defined. Here we demonstrate that IAV disseminates preferentially into the perivascular adipose tissue (PVAT) of the aorta in mice. IAV mRNA levels in the PVAT increased at 1-3 days post infection (d.p.i) with the levels being ~4-8 fold higher compared with the vessel wall. IAV infection also increased Ly6Clow patrolling monocytes and Ly6Chigh pro-inflammatory monocytes in the vessel wall at 3 d.p.i., which was then followed by a greater homing of these monocytes into the PVAT at 6 d.p.i. The vascular immune phenotype was characteristic of a "vascular storm"- like response, with increases in neutrophils, pro-inflammatory cytokines and oxidative stress markers in the PVAT and arterial wall, which was associated with an impairment in endothelium-dependent relaxation to acetylcholine. IAV also triggered a PVAT compartmentalised elevation in CD4+ and CD8+ activated T cells. In conclusion, the PVAT of the aorta is a niche that supports IAV dissemination and a site for perpetuating a profound innate inflammatory and adaptive T cell response. The manifestation of this inflammatory response in the PVAT following IAV infection may be central to the genesis of cardiovascular complications arising during pregnancy.


Asunto(s)
Virus de la Influenza A , Tejido Adiposo , Animales , Aorta , Endotelio Vascular , Femenino , Inflamación/genética , Ratones , Embarazo
3.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36009206

RESUMEN

Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-ß expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-ß response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-ß increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages.

4.
Front Cell Infect Microbiol ; 12: 883448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601109

RESUMEN

Endosomal NOX2 oxidase-dependent ROS production promotes influenza pathogenicity, but the role of NOX4 oxidase, which is highly expressed in the lung endothelium, is largely unknown. The aim of this study was to determine if endothelial NOX4 expression can influence viral pathology in vivo, using a mouse model of influenza infection. WT and transgenic endothelial NOX4 overexpressing mice (NOX4 TG) were infected intranasally with the Hong Kong H3N2 X-31 influenza A virus (104 PFU; HK x-31) or PBS control. Mice were culled at either 3 or 7 days post-infection to analyse: airway inflammation by bronchoalveolar lavage fluid (BALF) cell counts; NOX4, as well as inflammatory cytokine and chemokine gene expression by QPCR; and ROS production by an L-012-enhanced chemiluminescence assay. Influenza A virus infection of WT mice resulted in a significant reduction in lung NOX4 mRNA at day 3, which persisted until day 7, when compared to uninfected mice. Influenza A virus infection of NOX4 TG mice resulted in significantly less weight loss than that of WT mice at 3-days post infection. Viral titres were decreased in infected NOX4 TG mice compared to the infected WT mice, at both 3- and 7-days post infection and there was significantly less lung alveolitis, peri-bronchial inflammation and neutrophil infiltration. The oxidative burst from BALF inflammatory cells extracted from infected NOX4 TG mice was significantly less than that in the WT mice. Expression of macrophage and neutrophil chemoattractants CXCL10, CCL3, CXCL1 and CXCL2 in the lung tissue were significantly lower in NOX4 TG mice compared to the WT mice at 3-days post infection. We conclude that endothelial NOX4 oxidase is protective against influenza morbidity and is a potential target for limiting influenza A virus-induced lung inflammation.


Asunto(s)
NADPH Oxidasa 4 , Infecciones por Orthomyxoviridae , Neumonía , Animales , Endotelio/metabolismo , Endotelio/patología , Inflamación/metabolismo , Subtipo H3N2 del Virus de la Influenza A , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morbilidad , NADPH Oxidasa 4/metabolismo , Infecciones por Orthomyxoviridae/patología , Oxidorreductasas/metabolismo , Neumonía/patología , Neumonía/virología , Especies Reactivas de Oxígeno/metabolismo
5.
Front Pharmacol ; 13: 870156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401240

RESUMEN

There is an urgent need to develop effective therapeutic strategies including immunomodulators to combat influenza A virus (IAV) infection. Influenza A viruses increase ROS production, which suppress anti-viral responses and contribute to pathological inflammation and morbidity. Two major cellular sites of ROS production are endosomes via the NOX2-oxidase enzyme and the electron transport chain in mitochondria. Here we examined the effect of administration of Cgp91ds-TAT, an endosome-targeted NOX2 oxidase inhibitor, in combination with mitoTEMPO, a mitochondrial ROS scavenger and compared it to monotherapy treatment during an established IAV infection. Mice were infected with IAV (Hkx31 strain; 104PFU/mouse) and 24 h post infection were treated with Cgp91ds-TAT (0.2 mg/kg), mitoTEMPO (100 µg) or with a combination of these inhibitors [Cgp91ds-TAT (0.2 mg/kg)/mitoTEMPO (100 µg)] intranasally every day for up to 2 days post infection (pi). Mice were euthanized on Days 3 or 6 post infection for analyses of disease severity. A combination of Cgp91ds-TAT and mitoTEMPO treatment was more effective than the ROS inhibitors alone at reducing airway and neutrophilic inflammation, bodyweight loss, lung oedema and improved the lung pathology with a reduction in alveolitis following IAV infection. Dual ROS inhibition also caused a significant elevation in Type I IFN expression at the early phase of infection (day 3 pi), however, this response was suppressed at the later phase of infection (day 6 pi). Furthermore, combined treatment with Cgp91ds-TAT and mitoTEMPO resulted in an increase in IAV-specific CD8+ T cells in the lungs. In conclusion, this study demonstrates that the reduction of ROS production in two major subcellular sites, i.e. endosomes and mitochondria, by intranasal delivery of a combination of Cgp91ds-TAT and mitoTEMPO, suppresses the severity of influenza infection and highlights a novel immunomodulatory approach for IAV disease management.

6.
Proc Natl Acad Sci U S A ; 117(40): 24964-24973, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958663

RESUMEN

Influenza A virus (IAV) infection during pregnancy causes severe maternal and perinatal complications, despite a lack of vertical transmission of IAV across the placenta. Here, we demonstrate a significant alteration in the maternal vascular landscape that underpins the maternal and downstream fetal pathology to IAV infection in mice. In IAV infection of nonpregnant mice, the local lung inflammatory response was contained to the lungs and was self-resolving, whereas in pregnant mice, virus dissemination to major maternal blood vessels, including the aorta, resulted in a peripheral "vascular storm," with elevated proinflammatory and antiviral mediators and the influx of Ly6Clow and Ly6Chigh monocytes, plus neutrophils and T cells. This vascular storm was associated with elevated levels of the adhesion molecules ICAM and VCAM and the pattern-recognition receptors TLR7 and TLR9 in the vascular wall, resulting in profound vascular dysfunction. The sequalae of this IAV-driven vascular storm included placental growth retardation and intrauterine growth restriction, evidence of placental and fetal brain hypoxia, and increased circulating cell free fetal DNA and soluble Flt1. In contrast, IAV infection in nonpregnant mice caused no obvious alterations in endothelial function or vascular inflammation. Therefore, IAV infection during pregnancy drives a significant systemic vascular alteration in pregnant dams, which likely suppresses critical blood flow to the placenta and fetus. This study in mice provides a fundamental mechanistic insight and a paradigm into how an immune response to a respiratory virus, such as IAV, is likely to specifically drive maternal and fetal pathologies during pregnancy.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Innata/genética , Inflamación/genética , Virus de la Influenza A/genética , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Femenino , Feto/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/virología , Glicoproteínas de Membrana/genética , Ratones , Monocitos/metabolismo , Monocitos/patología , Placenta/irrigación sanguínea , Placenta/inmunología , Placenta/virología , Embarazo , Linfocitos T/inmunología , Linfocitos T/virología , Receptor Toll-Like 7/genética , Receptor Toll-Like 9/genética
7.
Antioxid Redox Signal ; 32(13): 982-992, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32008365

RESUMEN

Significance: Reactive oxygen species (ROS) are often considered to be undesirable toxic molecules that are generated under conditions of cellular stress, which can cause damage to critical macromolecules such as DNA. However, ROS can also contribute to the pathogenesis of cancer and many other chronic inflammatory disease conditions, including atherosclerosis, metabolic disease, chronic obstructive pulmonary disease, neurodegenerative disease, and autoimmune disease. Recent Advances: The field of ROS biology is expanding, with an emerging paradigm that these reactive species are not generated haphazardly, but instead produced in localized regions or in specific subcellular compartments, and this has important consequences for immune system function. Currently, there is evidence for ROS generation in extracellular spaces, in endosomal compartments, and within mitochondria. Intriguingly, the specific location of ROS production appears to be influenced by the type of invading pathogen (i.e., bacteria, virus, or fungus), the size of the invading pathogen, as well as the expression/subcellular action of pattern recognition receptors and their downstream signaling networks, which sense the presence of these invading pathogens. Critical Issues: ROS are deliberately generated by the immune system, using specific NADPH oxidases that are critically important for pathogen clearance. Professional phagocytic cells can sense a foreign bacterium, initiate phagocytosis, and then within the confines of the phagosome, deliver bursts of ROS to these pathogens. The importance of confining ROS to this specific location is the impetus for this perspective. Future Directions: There are specific knowledge gaps on the fate of the ROS generated by NADPH oxidases/mitochondria, how these ROS are confined to specific locations, as well as the identity of ROS-sensitive targets and how they regulate cellular signaling.


Asunto(s)
Neoplasias/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Humanos , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Mitocondrias/inmunología , Mitocondrias/metabolismo , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Especies Reactivas de Oxígeno/metabolismo
8.
Antioxid Redox Signal ; 32(13): 993-1013, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32008371

RESUMEN

Significance: Up until recently, metabolism has scarcely been referenced in terms of immunology. However, emerging evidence has shown that immune cells undergo an adaptation of metabolic processes, known as the metabolic switch. This switch is key to the activation, and sustained inflammatory phenotype in immune cells, which includes the production of cytokines and reactive oxygen species (ROS) that underpin infectious diseases, respiratory and cardiovascular disease, neurodegenerative disease, as well as cancer. Recent Advances: There is a burgeoning body of evidence that immunometabolism and redox biology drive infectious diseases. For example, influenza A virus (IAV) utilizes endogenous ROS production via NADPH oxidase (NOX)2-containing NOXs and mitochondria to circumvent antiviral responses. These evolutionary conserved processes are promoted by glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle that drive inflammation. Such metabolic products involve succinate, which stimulates inflammation through ROS-dependent stabilization of hypoxia-inducible factor-1α, promoting interleukin-1ß production by the inflammasome. In addition, itaconate has recently gained significant attention for its role as an anti-inflammatory and antioxidant metabolite of the TCA cycle. Critical Issues: The molecular mechanisms by which immunometabolism and ROS promote viral and bacterial pathology are largely unknown. This review will provide an overview of the current paradigms with an emphasis on the roles of immunometabolism and ROS in the context of IAV infection and secondary complications due to bacterial infection such as Streptococcus pneumoniae. Future Directions: Molecular targets based on metabolic cell processes and ROS generation may provide novel and effective therapeutic strategies for IAV and associated bacterial superinfections.


Asunto(s)
Antiinflamatorios/uso terapéutico , Gripe Humana/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones Neumocócicas/tratamiento farmacológico , Enfermedades Respiratorias/tratamiento farmacológico , Animales , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/metabolismo , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/metabolismo
9.
Antioxid Redox Signal ; 32(13): 943-956, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31190552

RESUMEN

Aims: Excessive reactive oxygen species (ROS) are detrimental to immune cellular functions that control pathogenic microbes; however, the mechanisms are poorly understood. Our aim was to determine the immunological consequences of increased ROS levels during acute bacterial infection. Results: We used a model of Streptococcus pneumoniae (Spn) lung infection and superoxide dismutase 3-deficient (SOD3-/-) mice, as SOD3 is a major antioxidant enzyme that catalyses the dismutation of superoxide radicals. First, we observed that in vitro, macrophages from SOD3-/- mice generated excessive phagosomal ROS during acute bacterial infection. In vivo, there was a significant reduction in infiltrating neutrophils in the bronchoalveolar lavage fluid and reduced peribronchial and alveoli inflammation in SOD3-/- mice 2 days after Spn infection. Annexin V/propidium iodide staining revealed enhanced apoptosis in neutrophils from Spn-infected SOD3-/- mice. In addition, SOD3-/- mice showed an altered macrophage phenotypic profile, with markedly diminished recruitment of monocytes (CD11clo, CD11bhi) in the airways. Further investigation revealed significantly lower levels of the monocyte chemokine CCL-2, and cytokines IL-23, IL-1ß, and IL-17A in Spn-infected SOD3-/- mice. There were also significantly fewer IL-17A-expressing gamma-delta T cells (γδ T cells) in the lungs of Spn-infected SOD3-/- mice. Innovation: Our data demonstrate that SOD3 deficiency leads to an accumulation of phagosomal ROS levels that initiate early neutrophil apoptosis during pneumococcal infection. Consequent to these events, there was a failure to initiate innate γδ T cell responses. Conclusion: These studies offer new cellular and mechanistic insights into how excessive ROS can regulate innate immune responses to bacterial infection.


Asunto(s)
Interleucina-17/inmunología , Infecciones Neumocócicas/inmunología , Especies Reactivas de Oxígeno/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Neumocócicas/patología , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/inmunología
10.
Antioxid Redox Signal ; 32(13): 929-942, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31190565

RESUMEN

Aims: Reactive oxygen species (ROS) are highly reactive molecules generated in different subcellular sites or compartments, including endosomes via the NOX2-containing nicotinamide adenine dinucleotide phosphate oxidase during an immune response and in mitochondria during cellular respiration. However, while endosomal NOX2 oxidase promotes innate inflammation to influenza A virus (IAV) infection, the role of mitochondrial ROS (mtROS) has not been comprehensively investigated in the context of viral infections in vivo. Results: In this study, we show that pharmacological inhibition of mtROS, with intranasal delivery of MitoTEMPO, resulted in a reduction in airway/lung inflammation, neutrophil infiltration, viral titers, as well as overall morbidity and mortality in mice infected with IAV (Hkx31, H3N2). MitoTEMPO treatment also attenuated apoptotic and necrotic neutrophils and macrophages in airway and lung tissue. At an early phase of influenza infection, that is, day 3 there were significantly lower amounts of IL-1ß protein in the airways, but substantially higher amounts of type I IFN-ß following MitoTEMPO treatment. Importantly, blocking mtROS did not appear to alter the initiation of an adaptive immune response by lung dendritic cells, nor did it affect lung B and T cell populations that participate in humoral and cellular immunity. Innovation/Conclusion: Influenza virus infection promotes mtROS production, which drives innate immune inflammation and this exacerbates viral pathogenesis. This pathogenic cascade highlights the therapeutic potential of local mtROS antioxidant delivery to alleviate influenza virus pathology.


Asunto(s)
Inflamación/inmunología , Mitocondrias/inmunología , Infecciones por Orthomyxoviridae/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Inflamación/tratamiento farmacológico , Inflamación/patología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/patología , Piperidinas/administración & dosificación , Piperidinas/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores
11.
Respirology ; 24(10): 1011-1017, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30884042

RESUMEN

BACKGROUND AND OBJECTIVE: Influenza A viruses (IAV) cause respiratory tract infections that can be fatal when the virus spreads to the alveolar space (i.e. alveolitis), and this is mainly observed with highly pathogenic strains. Reactive oxygen species (ROS) production by the NOX2 NADPH oxidase in endosomes has been directly implicated in IAV pathology. Recently, we demonstrated that treatment with a novel endosome-targeted NOX2 oxidase inhibitor, cholestanol-conjugated gp91dsTAT (Cgp91ds-TAT), attenuated airway inflammation and viral replication to infection with a low pathogenic influenza A viral strain. Here, we determined whether suppression of endosome NOX2 oxidase prevents the lung inflammation following infection with a highly pathogenic IAV strain. METHODS: C57Bl/6 mice were intranasally treated with either DMSO vehicle (2%) or Cgp91ds-TAT (0.2 mg/kg/day) 1 day prior to infection with the high pathogenicity PR8 IAV strain (500 PFU/mouse). At Day 3 post-infection, mice were culled for the evaluation of airway and lung inflammation, viral titres and ROS generation. RESULTS: PR8 infection resulted in a marked degree of airway inflammation, epithelial denudation, alveolitis and inflammatory cell ROS production. Cgp91ds-TAT treatment significantly attenuated airway inflammation, including neutrophil influx, the degree of alveolitis and inflammatory cell ROS generation. Importantly, the anti-inflammatory phenotype affected by Cgp91ds-TAT significantly enhanced the clearance of lung viral mRNA following PR8 infection. CONCLUSION: Endosomal NOX2 oxidase promotes pathogenic lung inflammation to IAV infection. The localized delivery of endosomal NOX2 oxidase inhibitors is a novel therapeutic strategy against IAV, which has the potential to limit the pathogenesis caused during epidemics and pandemics.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Virus de la Influenza A , NADPH Oxidasa 2/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/complicaciones , Neumonía/tratamiento farmacológico , Animales , Endosomas , Humanos , Gripe Humana/epidemiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/patología , Pandemias , Neumonía/metabolismo , Neumonía/patología , Neumonía/virología , Especies Reactivas de Oxígeno/metabolismo
12.
Sci Rep ; 9(1): 2366, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787331

RESUMEN

Toll-like receptor 7 (TLR7) is a pattern recognition receptor that recognizes viral RNA following endocytosis of the virus and initiates a powerful immune response characterized by Type I IFN production and pro-inflammatory cytokine production. Despite this immune response, the virus causes very significant pathology, which may be inflammation-dependent. In the present study, we examined the effect of intranasal delivery of the TLR7 agonist, imiquimod or its topical formulation Aldara, on the inflammation and pathogenesis caused by IAV infection. In mice, daily intranasal delivery of imiquimod prevented peak viral replication, bodyweight loss, airway and pulmonary inflammation, and lung neutrophils. Imiquimod treatment also resulted in a significant reduction in pro-inflammatory neutrophil chemotactic cytokines and prevented the increase in viral-induced lung dysfunction. Various antibody isotypes (IgG1, IgG2a, total IgG, IgE and IgM), which were increased in the BALF following influenza A virus infection, were further increased with imiquimod. While epicutaneous application of Aldara had a significant effect on body weight, it did not reduce neutrophil and eosinophil airway infiltration; indicating less effective drug delivery for this formulation. We concluded that intranasal imiquimod facilitates a more effective immune response, which can limit the pathology associated with influenza A virus infection.


Asunto(s)
Imiquimod/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Administración Intranasal , Animales , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Replicación Viral
13.
Nat Commun ; 8(1): 69, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701733

RESUMEN

The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.


Asunto(s)
Virus de la Influenza A/patogenicidad , NADPH Oxidasa 2/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antivirales/uso terapéutico , Progresión de la Enfermedad , Endosomas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Ratones , NADPH Oxidasa 2/antagonistas & inhibidores , NADPH Oxidasa 2/genética , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Transducción de Señal , Receptor Toll-Like 7/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...