Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Temperature (Austin) ; 10(4): 444-453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130655

RESUMEN

The heated environment shifts the sympatho-vagal balance toward sympathetic predominance and vagal withdrawal. Women's heart is more reliant on vagal autonomic control, while men's heart is more dependent on sympathetic control. However, sex differences in cardiovascular autonomic responses to heat stress remain unknown. We aimed to investigate the cardiovascular autonomic regulation under heat stress between sexes. Thirty-two young participants (27 ± 4 years old; 16 women) were enrolled in a single visit, resting for 30min at baseline (thermal reference condition TC; ∼24°C) and 30min under a heated environment (HOT; ∼38°C). Blood pressure (BP), skin temperature, electrocardiogram, and respiratory oscillations were continuously recorded. The heart rate variability (HRV) was assessed by spectral analysis (low-frequency [LFnu; sympathetic and vagal] and high-frequency [HFnu; vagal]), and symbolic analysis (0 V% [sympathetic] and 2UV%, and 2LV% [vagal]). The spontaneous baroreflex sensitivity (BRS) was calculated by the gain between BP and R-R within the LF band (αLF). The estimated maximal aerobic capacity and body surface area were employed as covariates in sex comparisons. The effects of HOT were the following: 1) Women have a greater cardiac vagal withdrawal to heat stress compared to men; 2) Sex differences on cardiac autonomic response to heat stress exist after controlling for the effect of estimated physical fitness and body surface area. Therefore, heat stress provokes a higher vagal withdrawal to the heart in women compared to men. It could be attributed to sex per se since significant differences between men and women were not modified after covariate analysis.

2.
Physiol Meas ; 42(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34261052

RESUMEN

Objective.To investigate the interplay between active standing and heat stress on cardiovascular autonomic modulation in healthy individuals.Approach.Blood pressure (BP) and ECG were continuously recorded during 30 min in supine (SUP) and 6 min in orthostatic position (ORT) under thermal reference (TC; ∼24 °C) or heated environment (HOT; ∼36 °C) conditions, in a randomized order. All data collection was performed during the winter and spring seasons when typical outdoor temperatures are ∼23 °C. Spectral analysis was employed by the autoregressive model of R-R and systolic blood pressure (SBP) time series and defined, within each band, in low (LF, 0.04 to 0.15 Hz) and high (0.15-0.40 Hz) frequencies. The indices of cardiac sympathetic (LF) and cardiac parasympathetic (HF) were normalized (nu) dividing each band power by the total power subtracted the very-low component (<0.04 Hz), obtaining the cardiac autonomic balance (LF/HF) modulation. The gain of the relationship between SBP and R-R variabilities within the LF band was utilized for analysis of spontaneous baroreflex sensitivity (alpha index;αLF). Nonlinear analysis was employed through symbolic dynamics of R-R, which provided the percentage of sequences of three heart periods without changes in R-R interval (0V%; cardiac sympathetic modulation) and two significant variations (2UV% and 2LV%; cardiac vagal modulation).Main results.HOT increased 0V% and HR, and decreasedαLF and 2UV% during SUP compared to TC. During ORT, HOT provokes a greater increment on HR, LF/HF and 0V%, indexes compared to ORT under TC.Significance.At rest, heat stress influences both autonomic branches, increasing sympathetic and decreasing vagal modulation and spontaneous baroreflex sensitivity. The augmented HR during active standing under heat stress seems to be mediated by a greater increment in cardiac sympathetic modulation, showing an interplay between gravitational and thermal stimulus.


Asunto(s)
Sistema Nervioso Autónomo , Sistema Cardiovascular , Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA