Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36211, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247288

RESUMEN

Springs and streams are vital water sources for supporting the livelihood of Himalayan residents. Escalating climate change, population growth, and economic development strain the region's freshwater resources. A national survey reveals declining spring and stream flows in Bhutan, necessitating an improved understanding of their generation. Monthly grab water samples were collected during April 2022-January 2023 from main streams, springs and other source waters at various elevations at Yude Ri and Dungju Ri catchments, Bhutan Himalayas. Samples were analyzed for pH, specific conductance, and major ions and end-member mixing analysis in combination with diagnostic tools of mixing models was used to determine sources, relative contributions, and recharge dynamics of spring flows. The results indicated that direct precipitation dominated spring flows (0.59 ± 0.21), followed by shallow groundwater (0.31 ± 0.18), and soil subsurface water (0.10 ± 0.15). The contributions of spring flow components followed an elevation gradient, with higher and lower fractions, respectively, of direct precipitation and shallow groundwater at higher elevations, e.g., 0.90 ± 0.1 to 0.13 ± 0.08 for direct precipitation and 0.03 ± 0.03 to 0.37 ± 0.19 for shallow groundwater from 3266 m to 1558 m. Spring flows primarily relied on precipitation (∼70 % from both direct precipitation and soil water), making them very sensitive to changes in precipitation. Significant contributions of shallow groundwater also indicated the vulnerability of spring flows to decreased snowfall relative to rainfall and the earlier onset of snowmelt, particularly for those located in the snow-rain transition zone (∼2500 m). Our results suggest high vulnerability of spring flows to the climate change in the Himalayas.

2.
Ecol Evol ; 10(23): 12929-12939, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304505

RESUMEN

Survival of endangered Himalayan red panda is threatened by ever-growing anthropogenic activities leading to an unprecedented rate of habitat degradation and loss. However, limited studies have been conducted in the context of the spatial distribution of habitats and habitat connectivity for the species in the landscape of Sakteng Wildlife Sanctuary (SWS). Lack of such information remains a challenge while implementing effective and holistic conservation initiatives. Therefore, this study identifies the distribution of potential habitats and their connectivity using maxent and linkage mapper, respectively. Precipitation-related predictor variables exhibited a significant influence on the prediction of habitat distribution. The model predicted 27.7% of the SWS as a potential habitat (fundamental niche). More than 75% of the predicted habitats fall outside the existing core zones where anthropogenic disturbance is relatively high, indicating the need to reassess existing management options. In SWS, 15 core habitats (CH) are predicted which are connected by a least-cost corridor (length µ = 2.91 km) with several pinch points in it. Centrally located CH5 and CH11 are identified as the most important habitat in maintaining overall connectivity within SWS. However, CH located in the peripheries could be equally important in facilitating the transboundary movement of the species. Overall, SWS can play a critical role as a connecting link between the larger landscape of Bhutan and the adjacent Indian state of Arunachal Pradesh in the conservation of Himalayan red panda that exhibits narrow dispersal with special habitat needs. Based on our findings, we recommend initiating GPS/satellite telemetry of the species to enable SWS to understand the precise interaction of Himalayan red panda to widespread herder communities, livestock, and free-roaming dogs dwelling in the same landscape. It will also help to evaluate the functionality of the predicted habitats, linkages, and feasibility of transboundary conservation initiatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA