Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683874

RESUMEN

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Asunto(s)
Respiración de la Célula , Mitocondrias , Receptor Muscarínico M2 , Mitocondrias/metabolismo , Humanos , Animales , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Ratones , Proliferación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Fosforilación Oxidativa , Células HEK293
2.
Elife ; 122023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085667

RESUMEN

Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer296/pSer297 or pThr306/pThr310 provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ. In white adipose tissue, phosphorylation of residues Ser296/Ser297 was enhanced upon agonist activation whilst Thr306/Thr310 did not become phosphorylated. By contrast, in immune cells from Peyer's patches Thr306/Thr310 become phosphorylated in a strictly agonist-dependent fashion whilst in enteroendocrine cells of the colon both Ser296/Ser297 and Thr306/Thr310 were poorly phosphorylated. The concept of phosphorylation bar-coding has centred to date on the potential for different agonists to promote distinct receptor phosphorylation patterns. Here, we demonstrate that this occurs for the same agonist-receptor pairing in different patho-physiologically relevant target tissues. This may underpin why a single G protein-coupled receptor can generate different functional outcomes in a tissue-specific manner.


Asunto(s)
Ácidos Grasos no Esterificados , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Línea Celular , Ácidos Grasos Volátiles/metabolismo , Ratones Transgénicos , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo
3.
J Biol Chem ; 299(10): 105218, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660910

RESUMEN

Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.

4.
Nat Commun ; 14(1): 5440, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673901

RESUMEN

The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.


Asunto(s)
Conducta Adictiva , Humanos , Sitio Alostérico , Encéfalo , Cognición
5.
Eur J Med Chem ; 258: 115588, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37423123

RESUMEN

Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and ß-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Ratones , Animales , Cricetinae , Regulación Alostérica , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Piridinas/farmacología , Piridinas/química , Transducción de Señal , Células CHO
6.
Front Cell Neurosci ; 17: 1124333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909280

RESUMEN

Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.

7.
Expert Opin Ther Targets ; 27(2): 151-169, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36942408

RESUMEN

INTRODUCTION: The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED: In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION: We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.


Asunto(s)
Antimaláricos , Malaria , Parásitos , Plasmodium , Animales , Humanos , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Descubrimiento de Drogas
8.
Sci Signal ; 15(760): eabm3720, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378750

RESUMEN

Many dementias are propagated through the spread of "prion-like" misfolded proteins. This includes prion diseases themselves (such as Creutzfeldt-Jakob disease) and Alzheimer's disease (AD), for which no treatments are available to slow or stop progression. The M1 acetylcholine muscarinic receptor (M1 receptor) is abundant in the brain, and its activity promotes cognitive function in preclinical models and in patients with AD. Here, we investigated whether activation of the M1 receptor might slow the progression of neurodegeneration associated with prion-like misfolded protein in a mouse model of prion disease. Proteomic and transcriptomic analysis of the hippocampus revealed that this model had a molecular profile that was similar to that of human neurodegenerative diseases, including AD. Chronic enhancement of the activity of the M1 receptor with the positive allosteric modulator (PAM) VU0486846 reduced the abundance of prion-induced molecular markers of neuroinflammation and mitochondrial dysregulation in the hippocampus and normalized the abundance of those associated with neurotransmission, including synaptic and postsynaptic signaling components. PAM treatment of prion-infected mice prolonged survival and maintained cognitive function. Thus, allosteric activation of M1 receptors may reduce the severity of neurodegenerative diseases caused by the prion-like propagation of misfolded protein.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Humanos , Animales , Ratones , Priones/genética , Enfermedades Neurodegenerativas/genética , Patología Molecular , Proteómica , Enfermedades por Prión/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
9.
Br J Pharmacol ; 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355830

RESUMEN

Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside.

10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293091

RESUMEN

FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with ß-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of ß-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how ß-arrestins and GRKs regulate the function of long chain fatty acid receptors.


Asunto(s)
Arrestinas , Quinasas de Receptores Acoplados a Proteína-G , Arrestinas/metabolismo , beta-Arrestinas , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Grasos
11.
Proc Natl Acad Sci U S A ; 119(24): e2201103119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671422

RESUMEN

The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)-linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti-green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP-expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.


Asunto(s)
Corteza Cerebral , Hipocampo , Receptor Muscarínico M1 , Animales , Corteza Cerebral/metabolismo , Proteínas Fluorescentes Verdes , Hipocampo/metabolismo , Ligandos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Imagen Óptica , Receptor Muscarínico M1/química , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
12.
Neuronal Signal ; 6(1): NS20210004, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571495

RESUMEN

Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.

13.
J Biol Chem ; 298(5): 101932, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35427647

RESUMEN

GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [32P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP. GPR84 was phosphorylated constitutively on residues Ser221 and Ser224, while various other amino acids are phosphorylated in response to 2-HTP. Consistent with this, an antiserum able to identify pSer221/pSer224 recognized GPR84 from cells treated with and without activators, whereas an antiserum able to identify pThr263/pThr264 only recognized GPR84 after exposure to 2-HTP and not DL-175. Two distinct GPR84 antagonists as well as inhibition of G protein-coupled receptor kinase 2/3 prevented phosphorylation of pThr263/pThr264, but neither strategy affected constitutive phosphorylation of Ser221/Ser224. Furthermore, mutation of residues Thr263 and Thr264 to alanine generated a variant of GPR84 also limited in 2-HTP-induced interactions with arrestin-2 and -3. By contrast, this mutant was unaffected in its capacity to reduce cAMP levels. Taken together, these results define a key pair of threonine residues, regulated only by subsets of GPR84 small molecule activators and by GRK2/3 that define effective interactions with arrestins and provide novel tools to monitor the phosphorylation and functional status of GPR84.


Asunto(s)
Arrestinas , Treonina , Arrestinas/metabolismo , Humanos , Ligandos , Mutación , Fosforilación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serina/metabolismo , Treonina/metabolismo , Arrestina beta 2/metabolismo
14.
Elife ; 112022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229717

RESUMEN

Volatile small molecules, including the short-chain fatty acids (SCFAs), acetate and propionate, released by the gut microbiota from the catabolism of nondigestible starches, can act in a hormone-like fashion via specific G-protein-coupled receptors (GPCRs). The primary GPCR targets for these SCFAs are FFA2 and FFA3. Using transgenic mice in which FFA2 was replaced by an altered form called a Designer Receptor Exclusively Activated by Designer Drugs (FFA2-DREADD), but in which FFA3 is unaltered, and a newly identified FFA2-DREADD agonist 4-methoxy-3-methyl-benzoic acid (MOMBA), we demonstrate how specific functions of FFA2 and FFA3 define a SCFA-gut-brain axis. Activation of both FFA2/3 in the lumen of the gut stimulates spinal cord activity and activation of gut FFA3 directly regulates sensory afferent neuronal firing. Moreover, we demonstrate that FFA2 and FFA3 are both functionally expressed in dorsal root- and nodose ganglia where they signal through different G proteins and mechanisms to regulate cellular calcium levels. We conclude that FFA2 and FFA3, acting at distinct levels, provide an axis by which SCFAs originating from the gut microbiota can regulate central activity.


Asunto(s)
Eje Cerebro-Intestino , Receptores de Superficie Celular , Animales , Ácidos Grasos Volátiles/metabolismo , Ratones , Propionatos/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
J Biol Chem ; 298(3): 101655, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101446

RESUMEN

G protein-coupled receptor 35 (GPR35) is poorly characterized but nevertheless has been revealed to have diverse roles in areas including lower gut inflammation and pain. The development of novel reagents and tools will greatly enhance analysis of GPR35 functions in health and disease. Here, we used mass spectrometry, mutagenesis, and [32P] orthophosphate labeling to identify that all five hydroxy-amino acids in the C-terminal tail of human GPR35a became phosphorylated in response to agonist occupancy of the receptor and that, apart from Ser294, each of these contributed to interactions with arretin-3, which inhibits further G protein-coupled receptor signaling. We found that Ser303 was key to such interactions; the serine corresponding to human GPR35a residue 303 also played a dominant role in arrestin-3 interactions for both mouse and rat GPR35. We also demonstrated that fully phospho-site-deficient mutants of human GPR35a and mouse GPR35 failed to interact effectively with arrestin-3, and the human phospho-deficient variant was not internalized from the surface of cells in response to agonist treatment. Even in cells stably expressing species orthologues of GPR35, a substantial proportion of the expressed protein(s) was determined to be immature. Finally, phospho-site-specific antisera targeting the region encompassing Ser303 in human (Ser301 in mouse) GPR35a identified only the mature forms of GPR35 and provided effective sensors of the activation status of the receptors both in immunoblotting and immunocytochemical studies. Such antisera may be useful tools to evaluate target engagement in drug discovery and target validation programs.


Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Humanos , Sueros Inmunes/farmacología , Ratones , Fosforilación , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Serina/metabolismo , Arrestina beta 2/metabolismo
16.
Br J Pharmacol ; 179(14): 3529-3541, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-32869860

RESUMEN

Despite the importance of members of the GPCR superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. GPR84 is an example. Expression of GPR84 is strongly up regulated in immune cells in a range of pro-inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Asunto(s)
Fibrosis Pulmonar Idiopática , Receptores Acoplados a Proteínas G , Humanos , Inflamación , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34893539

RESUMEN

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Asunto(s)
Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptor Muscarínico M1/metabolismo , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Enfermedades por Prión/genética , Receptor Muscarínico M1/genética , Transducción de Señal
18.
ACS Pharmacol Transl Sci ; 4(6): 1835-1848, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927014

RESUMEN

Although prevalent, nonalcoholic fatty liver disease is not currently treated effectively with medicines. Initially, using wild-type and genome-edited clones of the human hepatocyte cell line HepG2, we show that activation of the orphan G protein-coupled receptor GPR35 is both able and sufficient to block liver X-receptor-mediated lipid accumulation. Studies on hepatocytes isolated from both wild-type and GPR35 knock-out mice were consistent with a similar effect of GPR35 agonists in these cells, but because of marked differences in the pharmacology of GPR35 agonists and antagonists at the mouse and human orthologues, as well as elevated basal lipid levels in hepatocytes from the GPR35 knock-out mice, no definitive conclusion could be reached. To overcome this, we generated and characterized a transgenic knock-in mouse line in which the corresponding human GPR35 splice variant replaced the mouse orthologue. In hepatocytes from these humanized GPR35 mice, activation of this receptor was shown conclusively to prevent, and also reverse, lipid accumulation induced by liver X-receptor stimulation. These studies highlight the potential to target GPR35 in the context of fatty liver diseases.

19.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34822784

RESUMEN

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Diseño de Fármacos , Receptor Muscarínico M1/agonistas , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Presión Sanguínea/efectos de los fármacos , Células CHO , Inhibidores de la Colinesterasa/farmacología , Cricetulus , Cristalización , Modelos Animales de Enfermedad , Perros , Donepezilo/farmacología , Electroencefalografía , Femenino , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Simulación de Dinámica Molecular , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Primates , Ratas , Receptor Muscarínico M1/química , Transducción de Señal , Homología Estructural de Proteína
20.
PLoS One ; 16(11): e0260283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793553

RESUMEN

SARS-CoV-2 viral attachment and entry into host cells is mediated by a direct interaction between viral spike glycoproteins and membrane bound angiotensin-converting enzyme 2 (ACE2). The receptor binding motif (RBM), located within the S1 subunit of the spike protein, incorporates the majority of known ACE2 contact residues responsible for high affinity binding and associated virulence. Observation of existing crystal structures of the SARS-CoV-2 receptor binding domain (SRBD)-ACE2 interface, combined with peptide array screening, allowed us to define a series of linear native RBM-derived peptides that were selected as potential antiviral decoy sequences with the aim of directly binding ACE2 and attenuating viral cell entry. RBM1 (16mer): S443KVGGNYNYLYRLFRK458, RBM2A (25mer): E484GFNCYFPLQSYGFQPTNGVGYQPY508, RBM2B (20mer): F456NCYFPLQSYGFQPTNGVGY505 and RBM2A-Sc (25mer): NYGLQGSPFGYQETPYPFCNFVQYG. Data from fluorescence polarisation experiments suggested direct binding between RBM peptides and ACE2, with binding affinities ranging from the high nM to low µM range (Kd = 0.207-1.206 µM). However, the RBM peptides demonstrated only modest effects in preventing SRBD internalisation and showed no antiviral activity in a spike protein trimer neutralisation assay. The RBM peptides also failed to suppress S1-protein mediated inflammation in an endogenously expressing ACE2 human cell line. We conclude that linear native RBM-derived peptides are unable to outcompete viral spike protein for binding to ACE2 and therefore represent a suboptimal approach to inhibiting SARS-CoV-2 viral cell entry. These findings reinforce the notion that larger biologics (such as soluble ACE2, 'miniproteins', nanobodies and antibodies) are likely better suited as SARS-CoV-2 cell-entry inhibitors than short-sequence linear peptides.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Antivirales/farmacología , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus , Células A549 , Humanos , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...