Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Retrovirology ; 20(1): 10, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254203

RESUMEN

BACKGROUND: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS: Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.


Asunto(s)
VIH-1 , Humanos , VIH-1/genética , Guanina , Factores de Transcripción/genética , Cromatina , Duplicado del Terminal Largo de VIH/genética , Transcripción Genética
3.
PLoS Pathog ; 19(3): e1011207, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996029

RESUMEN

Transmissions of simian viruses to humans has originated the different groups of HIV-1. We recently identified a functional motif (CLA), in the C-terminal domain of the integrase, essential for integration in HIV-1 group M. Here, we found that the motif is instead dispensable in group O isolates, because of the presence, in the N-terminal domain of HIV-1 O of a specific sequence, Q7G27P41H44, that we define as the NOG motif. Alterations of reverse transcription and of 3' processing observed by mutating the CLA motif of IN M are fully rescued to wt levels by inserting the sequence of the NOG motif in the N-ter of the protein. These results indicate that the two motifs (CLA and NOG) functionally complement each other and a working model accounting for these observations is proposed. The establishment of these two alternative motifs seems to be due to the different phylogenetic origin and history of these two groups. Indeed, the NOG motif is already present in the ancestor of group O (SIVgor) while it is absent from SIVcpzPtt, the ancestor of group M. The CLA motif, instead, seems to have emerged after SIVcpzPtt has been transferred to humans, since no conservation is found at the same positions in these simian viruses. These results show the existence of two-group specific motifs in HIV-1 M and O integrases. In each group, only one of the motifs is functional, potentially leading the other motif to diverge from its original function and, in an evolutionary perspective, assist other functions of the protein, further increasing HIV genetic diversity.


Asunto(s)
Integrasa de VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Humanos , Filogenia , VIH-1/genética , Virus de la Inmunodeficiencia de los Simios/genética , Integrasa de VIH/genética , Integrasas
4.
Front Microbiol ; 12: 652486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868211

RESUMEN

The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...