Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 2343, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138803

RESUMEN

Despite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations. To gain insight into the specification of complex centromeres, here we take an evolutionary approach, fully assembling genomes and centromeres of related fission yeasts. Centromere domain organization, but not sequence, is conserved between Schizosaccharomyces pombe, S. octosporus and S. cryophilus with a central CENP-ACnp1 domain flanked by heterochromatic outer-repeat regions. Conserved syntenic clusters of tRNA genes and 5S rRNA genes occur across the centromeres of S. octosporus and S. cryophilus, suggesting conserved function. Interestingly, nonhomologous centromere central-core sequences from S. octosporus and S. cryophilus are recognized in S. pombe, resulting in cross-species establishment of CENP-ACnp1 chromatin and functional kinetochores. Therefore, despite the lack of sequence conservation, Schizosaccharomyces centromere DNA possesses intrinsic conserved properties that promote assembly of CENP-A chromatin.


Asunto(s)
Centrómero/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Epigénesis Genética , Histonas , Cinetocoros , ARN Ribosómico 5S , ARN de Transferencia , Proteínas de Schizosaccharomyces pombe/metabolismo , Sintenía
2.
Genome Biol ; 18(1): 104, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595587

RESUMEN

BACKGROUND: Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS: A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION: This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.


Asunto(s)
Evolución Molecular , Phaeophyceae/genética , Cromosomas Sexuales/genética , Regulación de la Expresión Génica/genética , Haploidia , Procesos de Determinación del Sexo/genética
3.
Open Biol ; 4: 140043, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24789708

RESUMEN

CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(Scm3). We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1(CENP-A) at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7(CENP-Q/Okp1), Cnl2(Nkp2) and Mal2(CENP-O/Mcm21), components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1(KNL2) orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1(CENP-A) loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1(KNL2), thus representing the functional counterpart of Mis18BP1(KNL2) in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3(HJURP) Cnp1(CENP-A) loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas del Citoesqueleto/química , Histona Acetiltransferasas/metabolismo , Inmunoprecipitación , Cinetocoros/química , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alineación de Secuencia
4.
Curr Biol ; 20(16): 1476-81, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20705467

RESUMEN

The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X.


Asunto(s)
Compensación de Dosificación (Genética) , Drosophila melanogaster/genética , Cromosoma X , Animales , Femenino , Regulación de la Expresión Génica , Masculino , Modelos Genéticos , Retroelementos , Factores Sexuales
5.
Naturwissenschaften ; 96(10): 1185-91, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19562317

RESUMEN

Associative learning is key to how bees recognize and return to rewarding floral resources. It thus plays a major role in pollinator floral constancy and plant gene flow. Honeybees are the primary model for pollinator associative learning, but bumblebees play an important ecological role in a wider range of habitats, and their associative learning abilities are less well understood. We assayed learning with the proboscis extension reflex (PER), using a novel method for restraining bees (capsules) designed to improve bumblebee learning. We present the first results demonstrating that bumblebees exhibit the memory spacing effect. They improve their associative learning of odor and nectar reward by exhibiting increased memory acquisition, a component of long-term memory formation, when the time interval between rewarding trials is increased. Bombus impatiens forager memory acquisition (average discrimination index values) improved by 129% and 65% at inter-trial intervals (ITI) of 5 and 3 min, respectively, as compared to an ITI of 1 min. Memory acquisition rate also increased with increasing ITI. Encapsulation significantly increases olfactory memory acquisition. Ten times more foragers exhibited at least one PER response during training in capsules as compared to traditional PER harnesses. Thus, a novel conditioning assay, encapsulation, enabled us to improve bumblebee-learning acquisition and demonstrate that spaced learning results in better memory consolidation. Such spaced learning likely plays a role in forming long-term memories of rewarding floral resources.


Asunto(s)
Aprendizaje por Asociación/fisiología , Abejas/fisiología , Aprendizaje Discriminativo/fisiología , Memoria/fisiología , Polinización/fisiología , Percepción Espacial , Análisis de Varianza , Animales , Abejas/crecimiento & desarrollo , Flores , Modelos Biológicos , Néctar de las Plantas , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...