Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12512, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532795

RESUMEN

Reliable information on population size is fundamental to the management of threatened species. For wild species, mark-recapture methods are a cornerstone of abundance estimation. Here, we show the first application of the close-kin mark-recapture (CKMR) method to a terrestrial species of high conservation value; the Christmas Island flying-fox (CIFF). The CIFF is the island's last remaining native terrestrial mammal and was recently listed as critically endangered. CKMR is a powerful tool for estimating the demographic parameters central to CIFF management and circumvents the complications arising from the species' cryptic nature, mobility, and difficult-to-survey habitat. To this end, we used genetic data from 450 CIFFs captured between 2015 and 2019 to detect kin pairs. We implemented a novel CKMR model that estimates sex-specific abundance, trend, and mortality and accommodates observations from the kin-pair distribution of male reproductive skew and mate persistence. CKMR estimated CIFF total adult female abundance to be approximately 2050 individuals (95% CI (950, 4300)). We showed that on average only 23% of the adult male population contributed to annual reproduction and strong evidence for between-year mate fidelity, an observation not previously quantified for a Pteropus species in the wild. Critically, our population estimates provide the most robust understanding of the status of this critically endangered population, informing immediate and future conservation initiatives.


Asunto(s)
Quirópteros , Conservación de los Recursos Naturales , Humanos , Animales , Masculino , Femenino , Especies en Peligro de Extinción , Densidad de Población , Ecosistema , Mamíferos
2.
Mov Ecol ; 10(1): 19, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410304

RESUMEN

BACKGROUND: Animals are important vectors for the dispersal of a wide variety of plant species, and thus play a key role in maintaining the health and biodiversity of natural ecosystems. On oceanic islands, flying-foxes are often the only seed dispersers or pollinators. However, many flying-fox populations are currently in decline, particularly those of insular species, and this has consequences for the ecological services they provide. Knowledge of the drivers and the scale of flying-fox movements is important in determining the ecological roles that flying-foxes play on islands. This information is also useful for understanding the potential long-term consequences for forest dynamics resulting from population declines or extinction, and so can aid in the development of evidence-based ecological management strategies. To these ends, we examined the foraging movements, floral resource use, and social interactions of the Critically Endangered Christmas Island flying-fox (Pteropus natalis). METHODS: Utilization distributions, using movement-based kernel estimates (MBKE) were generated to determine nightly foraging movements of GPS-tracked P. natalis (n = 24). Generalized linear models (GLMs), linear mixed-effect models (LMMs), and Generalized linear mixed-effects model (GLMMs) were constructed to explain how intrinsic factors (body mass, skeletal size, and sex) affected the extent of foraging movements. In addition, we identified pollen collected from facial and body swabs of P. natalis (n = 216) to determine foraging resource use. Direct observations (n = 272) of foraging P. natalis enabled us to assess the various behaviors used to defend foraging resources. RESULTS: Larger P. natalis individuals spent more time foraging and less time traveling between foraging patches, traveled shorter nightly distances, and had smaller overall foraging ranges than smaller conspecifics. Additionally, larger individuals visited a lower diversity of floral resources. CONCLUSIONS: Our findings suggest that smaller P. natalis individuals are the primary vectors of long-distance dispersal of pollen and digested seeds in this species, providing a vital mechanism for maintaining the flow of plant genetic diversity across Christmas Island. Overall, our study highlights the need for more holistic research approaches that incorporate population demographics when assessing a species' ecological services.

3.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33693838

RESUMEN

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Asunto(s)
Quirópteros , Animales , Evolución Biológica , Quirópteros/genética , Evolución Molecular , Filogenia
4.
J Mammal ; 99(6): 1510-1521, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30538341

RESUMEN

Flying foxes (family Pteropodidae) have distinct life histories given their size, characterized by longevity, low reproductive output, and long gestation. However, they tend to decouple the age at which sexual maturity is reached from the age at which they reach adult dimensions. We examined growth, maturation, and reproduction in the Critically Endangered Christmas Island flying fox (Pteropus natalis) to determine the timing of sex-specific life cycle events and patterns of growth. We estimated that juvenile growth in forearm length and body mass increased at a mean rate of 0.029 ± 0.005 mm/day and 0.33 ± 0.07 g/day for both males and females alike. Using these growth rates, we determined that the birth of pups occurs between December and March, with young becoming volant between June and August. The age at maturation for P. natalis is one of the oldest among all bat species. Juvenile males began to mature 15 months after birth and reached maturity 27 months after birth. Females reached maturity 24 months after birth at a significantly smaller body mass (3.6%) and forearm length (1.4%) than males. Significant sexual dimorphism and bimaturation was observed, with juvenile males being 1.5% and adult males being 1.9% larger on average than females for skeletal dimensions only. Growth and maturation are even slower in P. natalis than in the few other Pteropus species studied to date. The slow growth and delayed maturation of P. natalis imply slower potential population growth rates, further complicating the recovery of this Critically Endangered single-island endemic.

5.
Oncol Rep ; 9(2): 383-6, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11836613

RESUMEN

A molecular study was performed on BRCA1 and BRCA2 genes in a Cypriot family, with a history of both male and female breast cancers. Three variants were detected in the BRCA1 gene, two of which are missense mutations at nucleotide positions 1186 in exon 11 (Q356R), and 4654 in exon 15 (S1512I). The third variant is a polymorphism at position 2430 in exon 11 (771L). Similarly in the BRCA2 gene two variants were detected: a missense mutation at position 1342, exon 10 (H372N), and a polymorphism at position 3624 in exon 11 (1132K). Since these BRCA2 variants appear to be polymorphisms in the Cypriot population, we suggest that the two BRCA1 mutations, Q356R and S1512I, may be related to the breast cancer phenotype.


Asunto(s)
Neoplasias de la Mama/etnología , Neoplasias de la Mama/genética , Genes BRCA1/fisiología , Adulto , Edad de Inicio , Anciano , Neoplasias de la Mama/diagnóstico , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , ADN de Neoplasias/sangre , Familia , Femenino , Frecuencia de los Genes , Genes BRCA2/fisiología , Humanos , Incidencia , Mutación Missense , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo Conformacional Retorcido-Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...