Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 878: 163015, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36965737

RESUMEN

Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly.

2.
Glob Chang Biol ; 28(11): 3515-3536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35293658

RESUMEN

Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.


Asunto(s)
Ecosistema , Peces , Animales , Invertebrados , Larva , Océanos y Mares
3.
Mar Pollut Bull ; 174: 113108, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35039172
4.
Mar Pollut Bull ; 165: 112171, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33621906

RESUMEN

Acoustic Deterrent Devices (ADDs) are used worldwide to deter pinnipeds from predating fish-aquaculture facilities. Desk-based noise-propagation modelling of six commercial ADD models, and a 'fictional' ADD was performed, the latter involving alternating source level, frequency, duty cycle, noise-exposure duration, and number of ADDs active simultaneously. Potential auditory impacts on marine mammals were explored using the Southall et al. (2019) criteria. Depending on operational characteristics, real ADDs were predicted to cause Temporary Threshold Shift (TTS) to Very High Frequency (VHF) cetaceans at ranges of 4-31 km, and a single fictional device operating at the highest outputs tested was predicted to cause TTS to VHF cetaceans at up to 32 km. Cumulative effects of 23 real fish-farm ADDs produced noise across large swathes of the Inner-Hebrides. The single variable causing greatest reduction in potential impact to marine mammals from fictional ADDs was SL.


Asunto(s)
Cetáceos , Ruido , Estimulación Acústica , Acústica , Animales , Acuicultura , Escocia
5.
J Acoust Soc Am ; 148(6): 3971, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33379917

RESUMEN

Little is known about localized, near-field soundscapes during offshore hydrocarbon drilling campaigns. In the Dogger Bank, North Sea, underwater noise recordings were made 41-60 m from the drill stem of the Noble Kolskaya jack-up exploration drilling rig. The aims were to document noise received levels (RLs) and frequency characteristics of rig-associated near-field noise. The rig produced sound pressure levels (SPLs) of 120 dB re 1 µPa in the frequency range of 2-1400 Hz. Over transient periods, RLs varied by 15-20 dB between softest (holding) and noisiest (drilling) operations. Tonal components at different frequencies varied with depth. Support vessel noise was significantly louder than the jack-up rig at frequencies <1 kHz, even in its noisiest "boulder-drilling" phase, though radiated noise levels were higher above 2 kHz. Rig SPLs fell rapidly above 8 kHz. Marine mammals, such as harbor porpoise (Phocoena phocoena) forage regularly near offshore oil and gas rigs and platforms, and it is predicted that animals experience different noise regimes while traversing the water column and can potentially detect the higher-frequency components of drilling noise to a distance of 70 m from the source; however, while levels were unlikely to cause auditory injury, effects on echolocation behavior are still unknown.

6.
Ecol Evol ; 9(8): 4853-4863, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031948

RESUMEN

Distributions of Daubenton's bat (Myotis daubentonii), common pipistrelle, (Pipistrellus pipistrellus), and soprano pipistrelle (Pipistrellus pygmaeus) were investigated along and altitudinal gradient of the Lledr River, Conwy, North Wales, and presence assessed in relation to the water surface condition, presence/absence of bank-side trees, and elevation. Ultrasound recordings of bats made on timed transects in summer 1999 were used to quantify habitat usage. All species significantly preferred smooth water sections of the river with trees on either one or both banks; P. pygmaeus also preferred smooth water with no trees. Bats avoided rough and cluttered water areas, as rapids may generate high-frequency echolocation-interfering noise and cluttered areas present obstacles to flight. In lower river regions, detections of bats reflected the proportion of suitable habitat available. At higher elevations, sufficient habitat was available; however, bats were likely restricted due to other factors such as a less predictable food source. This study emphasizes the importance of riparian habitat, bank-side trees, and smooth water as foraging habitat for bats in marginal upland areas until a certain elevation, beyond which bats in these areas likely cease to forage. These small-scale altitudinal differences in habitat selection should be factored in when designing future bat distribution studies and taken into consideration by conservation planners when reviewing habitat requirements of these species in Welsh river valleys, and elsewhere within the United Kingdom.

7.
Mar Environ Res ; 142: 69-79, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30274717

RESUMEN

Decommissioning of offshore infrastructure has become a major issue facing the global offshore energy industry. In the North Sea alone, the decommissioning liability is estimated at £40 billion by 2040. Current international policy requires removal of offshore infrastructure when their production life ends; however, this policy is being questioned as emerging data reveal the importance of these structures to fish and invertebrate populations. Indeed, some governments are developing 'rigs-to-reef' (RTR) policies in situations where offshore infrastructure is demonstrated to have important environmental benefits. Using Remotely Operated Vehicles (ROVs), this study quantified and analysed fish and invertebrate assemblage dynamics associated with an oil and gas (O&G) complex in the Dogger Bank Special Area of Conservation (SAC), in the North Sea, Germany. We found clear depth zonation of organisms: infralittoral communities (0-15 m), circalittoral assemblages (15-45 m) and epi-benthic communities (45-50 m), which implies that 'topping' or 'toppling' decommissioning strategies could eliminate communities that are unique to the upper zones. Sessile invertebrate assemblages were significantly different between structures, which appeared to be driven by both biotic and abiotic mechanisms. The O&G complex accommodated diverse and abundant motile invertebrate and fish assemblages within which the whelk Buccinium undatum, cod fish Gadus morhua and lumpsucker fish Cyclopterus lumpus used the infrastructure for different stages of reproduction. This observation of breeding implies that the structures may be producing more fish and invertebrates, as opposed to simply acting as sites of attraction (sensu the 'attraction vs production' debate). At present, there are no records of C. lumpus spawning at such depth and distance from the coast, and this is the first published evidence of this species using an offshore structure as a spawning site. Overall, this study provides important new insight into the role of offshore O&G structures as habitat for fish and invertebrates in the North Sea, thereby helping to inform decommissioning decisions.


Asunto(s)
Biodiversidad , Peces/fisiología , Invertebrados/fisiología , Industria del Petróleo y Gas , Animales , Mar del Norte , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...