Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ear Hear ; 44(1): 189-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35982520

RESUMEN

OBJECTIVES: We assessed if spatial hearing training improves sound localization in bilateral cochlear implant (BCI) users and whether its benefits can generalize to untrained sound localization tasks. DESIGN: In 20 BCI users, we assessed the effects of two training procedures (spatial versus nonspatial control training) on two different tasks performed before and after training (head-pointing to sound and audiovisual attention orienting). In the spatial training, participants identified sound position by reaching toward the sound sources with their hand. In the nonspatial training, comparable reaching movements served to identify sound amplitude modulations. A crossover randomized design allowed comparison of training procedures within the same participants. Spontaneous head movements while listening to the sounds were allowed and tracked to correlate them with localization performance. RESULTS: During spatial training, BCI users reduced their sound localization errors in azimuth and adapted their spontaneous head movements as a function of sound eccentricity. These effects generalized to the head-pointing sound localization task, as revealed by greater reduction of sound localization error in azimuth and more accurate first head-orienting response, as compared to the control nonspatial training. BCI users benefited from auditory spatial cues for orienting visual attention, but the spatial training did not enhance this multisensory attention ability. CONCLUSIONS: Sound localization in BCI users improves with spatial reaching-to-sound training, with benefits to a nontrained sound localization task. These findings pave the way to novel rehabilitation procedures in clinical contexts.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Localización de Sonidos , Humanos , Percepción Auditiva/fisiología , Implantación Coclear/métodos , Audición/fisiología , Pruebas Auditivas/métodos , Localización de Sonidos/fisiología , Estudios Cruzados
2.
PLoS One ; 17(4): e0263509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421095

RESUMEN

Localising sounds means having the ability to process auditory cues deriving from the interplay among sound waves, the head and the ears. When auditory cues change because of temporary or permanent hearing loss, sound localization becomes difficult and uncertain. The brain can adapt to altered auditory cues throughout life and multisensory training can promote the relearning of spatial hearing skills. Here, we study the training potentials of sound-oriented motor behaviour to test if a training based on manual actions toward sounds can learning effects that generalize to different auditory spatial tasks. We assessed spatial hearing relearning in normal hearing adults with a plugged ear by using visual virtual reality and body motion tracking. Participants performed two auditory tasks that entail explicit and implicit processing of sound position (head-pointing sound localization and audio-visual attention cueing, respectively), before and after having received a spatial training session in which they identified sound position by reaching to auditory sources nearby. Using a crossover design, the effects of the above-mentioned spatial training were compared to a control condition involving the same physical stimuli, but different task demands (i.e., a non-spatial discrimination of amplitude modulations in the sound). According to our findings, spatial hearing in one-ear plugged participants improved more after reaching to sound trainings rather than in the control condition. Training by reaching also modified head-movement behaviour during listening. Crucially, the improvements observed during training generalize also to a different sound localization task, possibly as a consequence of acquired and novel head-movement strategies.


Asunto(s)
Señales (Psicología) , Localización de Sonidos , Estimulación Acústica , Adaptación Fisiológica , Adulto , Percepción Auditiva , Estudios Cruzados , Audición , Humanos
3.
Iperception ; 12(2): 2041669521998393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145616

RESUMEN

Interactions with talkers wearing face masks have become part of our daily routine since the beginning of the COVID-19 pandemic. Using an on-line experiment resembling a video conference, we examined the impact of face masks on speech comprehension. Typical-hearing listeners performed a speech-in-noise task while seeing talkers with visible lips, talkers wearing a surgical mask, or just the name of the talker displayed on screen. The target voice was masked by concurrent distracting talkers. We measured performance, confidence and listening effort scores, as well as meta-cognitive monitoring (the ability to adapt self-judgments to actual performance). Hiding the talkers behind a screen or concealing their lips via a face mask led to lower performance, lower confidence scores, and increased perceived effort. Moreover, meta-cognitive monitoring was worse when listening in these conditions compared with listening to an unmasked talker. These findings have implications on everyday communication for typical-hearing individuals and for hearing-impaired populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...