Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 75: 81-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24915637

RESUMEN

Drug delivery to the lungs by inhalation offers a targeted drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Carriers providing sustained drug release in the lungs can improve therapeutic outcomes of inhaled medicines because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This review presents the different formulation strategies developed to control drug release in the lungs including microparticles and the wide array of nanomedicines. Large and porous microparticles offer excellent aerodynamic properties. Their large geometric size reduces their uptake by alveolar macrophages, making them a suitable carrier for sustained drug release in the lungs. Similarly, nanocarriers present significant potential for prolonged drug release in the lungs because they largely escape uptake by lung-surface macrophages and can remain in the pulmonary tissue for weeks. They can be embedded in large and porous microparticles in order to facilitate their delivery to the lungs. Conjugation of drugs to polymers as polyethylene glycol can be particularly beneficial to sustain the release of proteins in the lungs as it allows high protein loading. Drug conjugates can be readily delivered to respiratory airways by any current nebulizer device. Nonetheless, liposomes represent the formulation most advanced in clinical development. Liposomes can be prepared with lipids endogenous to the lungs and are particularly safe. Their composition can be adjusted to modulate drug release and they can encapsulate both hydrophilic and lipophilic compounds with high drug loading.


Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Pulmón/metabolismo , Administración por Inhalación , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Humanos
2.
J Control Release ; 187: 91-100, 2014 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-24845126

RESUMEN

Inhalation aerosols offer a targeted therapy for respiratory diseases. However, the therapeutic efficacy of inhaled biopharmaceuticals is limited by the rapid clearance of macromolecules in the lungs. The aim of this research was to study the effects of the PEGylation of antibody fragments on their local residence time after administration to the respiratory tract. We demonstrate that the conjugation of a two-armed 40-kDa polyethylene glycol (PEG) chain to anti-interleukin-17A (IL-17A) F(ab')2 and anti-IL-13 Fab' greatly prolonged the presence of these fragments within the lungs of mice. The content of PEGylated antibody fragments within the lungs plateaued up to 4h post-delivery, whereas the clearance of unconjugated proteins started immediately after administration. Forty-eight hours post-delivery, F(ab')2 and Fab' contents in the lungs had decreased to 10 and 14% of the dose initially deposited, respectively. However, this value was 40% for both PEG40-F(ab')2 and PEG40-Fab'. The prolonged pulmonary residency of the anti-IL-17A PEG40-F(ab')2 translated into an improved efficacy in reducing lung inflammation in a murine model of house dust mite-induced lung inflammation. We demonstrate that PEGylated proteins were principally retained within the lung lumen rather than the nasal cavities or lung parenchyma. In addition, we report that PEG increased pulmonary retention of antibody fragments through mucoadhesion and escape from alveolar macrophages rather than increased hydrodynamic size or improved enzymatic stability. The PEGylation of proteins might find broad application in the local delivery of therapeutic proteins to diseased airways.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/química , Polietilenglicoles/química , Sistema Respiratorio/metabolismo , Alérgenos/inmunología , Animales , Líquido del Lavado Bronquioalveolar , Femenino , Interleucina-13/inmunología , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Pyroglyphidae/inmunología
3.
PLoS One ; 8(5): e63344, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675482

RESUMEN

Pulmonary vaccination is a promising route for immunization against tuberculosis because the lung is the natural site of infection with Mycobacterium tuberculosis. Yet, adjuvants with a suitable safety profile need to be found to enhance mucosal immunity to recombinant antigens. The aim of this study was to evaluate the immunogenicity, the safety and the protective efficacy of a subunit vaccine composed of the immunodominant mycolyl-transferase antigen 85A (Ag85A) and one of three powerful mucosal adjuvants: the oligodeoxynucleotide containing unmethylated cytosine-phosphate-guanine motifs (CpG), the monophosphoryl lipid A of Salmonella minnesota (MPLA) or the B subunit of heat-labile enterotoxin of Escherichia coli (LTB). BALB/c mice were vaccinated in the deep lungs. Our results showed that lung administration of these adjuvants could specifically induce different types of T cell immunity. Both CpG and MPLA induced a Th-1 type immune response with significant antigen-specific IFN-γ production by spleen mononuclear cells in vitro and a tendency of increased IFN-γ in the lungs. Moreover, MPLA triggered a Th-17 response reflected by high IL-17A levels in the spleen and lungs. By contrast, LTB promoted a Th-2 biased immune response, with a production of IL-5 but not IFN-γ by spleen mononuclear cells in vitro. CpG did not induce inflammation in the lungs while LTB and MPLA showed a transient inflammation including a neutrophil influx one day after pulmonary administration. Pulmonary vaccination with Ag85A without or with MPLA or LTB tended to decrease bacterial counts in the spleen and lungs following a virulent challenge with M. tuberculosis H37Rv. In conclusion, CpG and MPLA were found to be potential adjuvants for pulmonary vaccination against tuberculosis, providing Th-1 and Th-17 immune responses and a good safety profile.


Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Inmunidad Mucosa , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Aciltransferasas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/administración & dosificación , Biomarcadores/metabolismo , Femenino , Inmunidad Celular , Inmunidad Humoral , Inflamación/inmunología , Inflamación/metabolismo , Lípido A/administración & dosificación , Lípido A/análogos & derivados , Pulmón/microbiología , Ratones , Bazo/inmunología , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
4.
Eur J Pharm Biopharm ; 84(1): 40-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23238272

RESUMEN

The current Bacille Calmette-Guérin vaccine provides variable protection against tuberculosis and new vaccination approaches are urgently needed. Pulmonary vaccination could be the best way to induce a protective immunity against Mycobacterium tuberculosis as it targets its natural site of infection. The aim of this study was to investigate the potential of Poloxamer 407 (P407) combined with a CpG oligonucleotide (CpG) to enhance immune responses to M. tuberculosis antigen 85A (Ag85A) following pulmonary delivery in BALB/c mice. An additional goal of this study was to localize the optimal delivery site of Ag85A within the lungs for generating the most intense immunity. We also investigated the capacity of P407 to prolong the residence time of the antigen within the lungs and we studied the safety of the adjuvants following pulmonary delivery. Targeting the antigen to the deep lungs produced more intense specific immune responses than targeting it to the upper airways. P407 and CpG further increased humoral immune responses and splenocyte proliferation in vitro. CpG strongly increased the Th-1 immune response with high IgG2a/IgG1 ratio, high IFN-γ and TNF-α productions by spleen mononuclear cells in vitro. P407 tended to induce a Th-2 response, as indicated by the slight decrease in IgG2a/IgG1 ratio and the slight increase in IL-5 levels. The combination of P407 and CpG produced the highest Th-1 and Th-17 responses by generating IFN-γ, TNF-α, IL-2, and IL-17A cytokines. Targeting the antigen to the deep lungs and the presence of P407 increased the residence time of the antigen within the lungs. This might explain the enhancement of immune responses induced by these factors. CpG did not induce inflammation in the lungs while P407 produced a reversible alteration of the alveolo-capillary barrier. Adding CpG to P407 did not further increase this alteration of the alveolo-capillary barrier. In conclusion, delivery of Ag85A formulated in a combination of P407 and CpG to the deep lungs induced strong immune responses, with a polyfunctional T cells phenotype.


Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Inmunidad Celular/inmunología , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Oligodesoxirribonucleótidos/inmunología , Poloxámero , Animales , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Femenino , Inmunidad Celular/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos/administración & dosificación , Poloxámero/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA