Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 853: 158615, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089026

RESUMEN

For climate-change impact studies at the catchment scale, meteorological variables are typically extracted from ensemble simulations provided by global and regional climate models, which are then downscaled and bias-adjusted for each study site. For bias adjustment, different statistical methods that re-scale climate model outputs have been suggested in the scientific literature. They range from simple univariate methods that adjust each meteorological variable individually, to more complex and more demanding multivariate methods that take existing relationships between meteorological variables into consideration. Over the past decade, several attempts have been made to evaluate such methods in various regions. There is, however, still no guidance for choosing appropriate bias adjustment methods for a study at hand. In particular, the question whether the benefits of potentially improved adjustments outweigh the cost of increased complexity, remains unanswered. This paper presents a comprehensive evaluation of the performance of two commonly used univariate and two multivariate bias adjustment methods in reproducing numerous univariate, multivariate and temporal features of precipitation and temperature series in different catchments in Sweden. The paper culminates in a discussion on trade-offs between the potential benefits (i.e., skills and added value) and disadvantages (complexity and computational demand) of each method to offer plausible, defensible and actionable insights from the standpoint of climate-change impact studies in high latitudes. We concluded that all selected bias adjustment methods generally improved the raw climate model simulations, but that not a single method consistently outperformed the other methods. There were, however, differences in the methods' performance for particular statistical features, indicating that other practical aspects such as computational time and heavy theoretical requirements should also be taken into consideration when choosing an appropriate bias adjustment method.


Asunto(s)
Clima , Modelos Teóricos , Cambio Climático , Temperatura , Sesgo
2.
Ambio ; 50(8): 1514-1531, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33263148

RESUMEN

Hydro-meteorological risks are a growing issue for societies, economies and environments around the world. An effective, sustainable response to such risks and their future uncertainty requires a paradigm shift in our research and practical efforts. In this respect, Nature-Based Solutions (NBSs) offer the potential to achieve a more effective and flexible response to hydro-meteorological risks while also enhancing human well-being and biodiversity. The present paper describes a new methodology that incorporates stakeholders' preferences into a multi-criteria analysis framework, as part of a tool for selecting risk mitigation measures. The methodology has been applied to Tamnava river basin in Serbia and Nangang river basin in Taiwan within the EC-funded RECONECT project. The results highlight the importance of involving stakeholders in the early stages of projects in order to achieve successful implementation of NBSs. The methodology can assist decision-makers in formulating desirable benefits and co-benefits and can enable a systematic and transparent NBSs planning process.


Asunto(s)
Biodiversidad , Ríos , Humanos , Serbia , Taiwán , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...