Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 10, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273331

RESUMEN

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a syndrome exhibiting elevated intracranial pressure (ICP), visual disturbances, and severe headache. IIH primarily affects young obese women, though it can occur in individuals of any age, BMI, and sex. IIH is characterized by systemic metabolic dysregulation with a profile of increased androgen hormones. However, the contribution of obesity/hormonal perturbations to cerebrospinal fluid (CSF) dynamics remains unresolved. METHODS: We employed obese female Zucker rats and adjuvant testosterone to reveal IIH causal drivers. ICP and CSF dynamics were determined with in vivo experimentation and magnetic resonance imaging, testosterone levels assessed with mass spectrometry, and choroid plexus function revealed with transcriptomics. RESULTS: Obese rats had undisturbed CSF testosterone levels and no changes in ICP or CSF dynamics. Adjuvant testosterone treatment of obese rats elevated the CSF secretion rate, although with no effect on the ICP, due to elevated CSF drainage capacity of these rats. CONCLUSIONS: Obesity in itself therefore does not suffice to recapitulate the IIH symptoms in rats, but modulation of CSF dynamics appears with adjuvant testosterone treatment, which mimics the androgen excess observed in female IIH patients. Obesity-induced androgen dysregulation may thus contribute to the disease mechanism of IIH and could potentially serve as a future therapeutic target.


Asunto(s)
Seudotumor Cerebral , Humanos , Femenino , Ratas , Animales , Andrógenos , Ratas Zucker , Obesidad , Testosterona
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255997

RESUMEN

Cerebral edema is a life-threatening condition that can cause permanent brain damage or death if left untreated. Existing therapies aim at mitigating the associated elevated intracranial pressure, yet they primarily alleviate pressure rather than prevent edema formation. Prophylactic anti-edema therapy necessitates novel drugs targeting edema formation. Aquaporin 4 (AQP4), an abundantly expressed water pore in mammalian glia and ependymal cells, has been proposed to be involved in cerebral edema formation. A series of novel compounds have been tested for their potential inhibitory effects on AQP4. However, selectivity, toxicity, functional inhibition, sustained therapeutic concentration, and delivery into the central nervous system are major challenges. Employing extensive density-functional theory (DFT) calculations, we identified a previously unreported thermodynamically stable tautomer of the recently identified AQP4-specific inhibitor TGN-020 (2-(nicotinamide)-1,3,4-thiadiazol). This novel form, featuring a distinct hydrogen-bonding pattern, served as a template for a COSMOsim-3D-based virtual screen of proprietary compounds from Origenis™. The screening identified ORI-TRN-002, an electronic homologue of TGN-020, demonstrating high solubility and low protein binding. Evaluating ORI-TRN-002 on AQP4-expressing Xenopus laevis oocytes using a high-resolution volume recording system revealed an IC50 of 2.9 ± 0.6 µM, establishing it as a novel AQP4 inhibitor. ORI-TRN-002 exhibits superior solubility and overcomes free fraction limitations compared to other reported AQP4 inhibitors, suggesting its potential as a promising anti-edema therapy for treating cerebral edema in the future.


Asunto(s)
Acuaporina 4 , Edema Encefálico , Niacinamida , Tiadiazoles , Animales , Acuaporina 4/antagonistas & inhibidores , Edema , Niacinamida/análogos & derivados
3.
Br J Pharmacol ; 181(1): 70-86, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553842

RESUMEN

BACKGROUND AND PURPOSE: Diseases of raised intracranial pressure (ICP) cause severe morbidity and mortality. Multiple drugs are utilised to lower ICP including acetazolamide and topiramate. However, the evidence for their use is unclear. We aimed to assess the ICP modulatory effects and molecular effects at the choroid plexus (CP) of acetazolamide and topiramate. EXPERIMENTAL APPROACH: Female rats were implanted with telemetric ICP probes for physiological, freely moving 24/7 ICP recordings. Randomised cross-over studies were performed, where rats received acute (24 h) high doses of acetazolamide and topiramate, and chronic (10 days) clinically equivalent doses of acetazolamide and topiramate, all via oral gavage. Cerebrospinal fluid (CSF) secretion assays, and RT-qPCR and western blots on in vitro and in vivo CP, were used to investigate drug actions. KEY RESULTS: We demonstrate that acetazolamide and topiramate achieved maximal ICP reduction within 120 min of administration, and in combination doubled the ICP reduction over a 24-h period. Chronic administration of acetazolamide or topiramate lowered ICP by 25%. Topiramate decreased CSF secretion by 40%. Chronic topiramate increased the gene expression of Slc12a2 and Slc4a10 and protein expression of the sodium-dependent chloride/bicarbonate exchanger (NCBE), whereas chronic acetazolamide did not affect the expression of assessed genes. CONCLUSIONS AND IMPLICATIONS: Acetazolamide and topiramate are effective at lowering ICP at therapeutic levels. We provide the first evidence that topiramate lowers CSF secretion and that acetazolamide and topiramate may lower ICP via distinct molecular mechanisms. Thus, the combination of acetazolamide and topiramate may have utility for treating raised ICP.


Asunto(s)
Acetazolamida , Presión Intracraneal , Femenino , Ratas , Animales , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Presión Intracraneal/fisiología , Topiramato/farmacología
4.
Cell Calcium ; 116: 102797, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801806

RESUMEN

The choroid plexus is a small monolayered epithelium located in the brain ventricles and serves to secrete the cerebrospinal fluid (CSF) that envelops the brain and fills the central ventricles. The CSF secretion is sustained with a concerted effort of a range of membrane transporters located in a polarized fashion in this tissue. Prominent amongst these are the Na+/K+-ATPase, the Na+,K+,2Cl- cotransporter (NKCC1), and several HCO3- transporters, which together support the net transepithelial transport of the major electrolytes, Na+ and Cl-, and thus drive the CSF secretion. The choroid plexus, in addition, serves an important role in keeping the CSF K+ concentration at a level compatible with normal brain function. The choroid plexus Na+/K+-ATPase represents a key factor in the barrier-mediated control of the CSF K+ homeostasis, as it increases its K+ uptake activity when faced with elevated extracellular K+ ([K+]o). In certain developmental or pathological conditions, the NKCC1 may revert its net transport direction to contribute to CSF K+ homeostasis. The choroid plexus ion transport machinery thus serves dual, yet interconnected, functions with its contribution to electrolyte and fluid secretion in combination with its control of brain K+ levels.


Asunto(s)
Plexo Coroideo , Simportadores , Plexo Coroideo/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Membrana , Sodio/metabolismo , Iones , Homeostasis , Adenosina Trifosfatasas
5.
Biomedicines ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760800

RESUMEN

Patients with subarachnoid hemorrhage (SAH) may develop posthemorrhagic hydrocephalus (PHH), which is treated with surgical cerebrospinal fluid (CSF) diversion. This diversion is associated with risk of infection and shunt failure. Biomarkers for PHH etiology, CSF dynamics disturbances, and potentially subsequent shunt dependency are therefore in demand. With the recent demonstration of lipid-mediated CSF hypersecretion contributing to PHH, exploration of the CSF lipid signature in relation to brain pathology is of interest. Despite being a relatively new addition to the omic's landscape, lipidomics are increasingly recognized as a tool for biomarker identification, as they provide a comprehensive overview of lipid profiles in biological systems. We here employ an untargeted mass spectroscopy-based platform and reveal the complete lipid profile of cisternal CSF from healthy control subjects and demonstrate its bimodal fluctuation with age. Various classes of lipids, in addition to select individual lipids, were elevated in the ventricular CSF obtained from patients with SAH during placement of an external ventricular drain. The lipidomic signature of the CSF in the patients with SAH suggests dysregulation of the lipids in the CSF in this patient group. Our data thereby reveal possible biomarkers present in a brain pathology with a hemorrhagic event, some of which could be potential future biomarkers for hypersecretion contributing to ventriculomegaly and thus pharmacological targets for pathologies involving disturbed CSF dynamics.

7.
Fluids Barriers CNS ; 19(1): 69, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068581

RESUMEN

BACKGROUND: A range of neurological pathologies may lead to secondary hydrocephalus. Treatment has largely been limited to surgical cerebrospinal fluid (CSF) diversion, as specific and efficient pharmacological options are lacking, partly due to the elusive molecular nature of the CSF secretion apparatus and its regulatory properties in physiology and pathophysiology. METHODS: CSF obtained from patients with subarachnoid hemorrhage (SAH) and rats with experimentally inflicted intraventricular hemorrhage (IVH) was analyzed for lysophosphatidic acid (LPA) by alpha-LISA. We employed the in vivo rat model to determine the effect of LPA on ventricular size and brain water content, and to reveal the effect of activation and inhibition of the transient receptor potential vanilloid 4 (TRPV4) ion channel on intracranial pressure and CSF secretion rate. LPA-mediated modulation of TRPV4 was determined with electrophysiology and an ex vivo radio-isotope assay was employed to determine the effect of these modulators on choroid plexus transport. RESULTS: Elevated levels of LPA were observed in CSF obtained from patients with subarachnoid hemorrhage (SAH) and from rats with experimentally-inflicted intraventricular hemorrhage (IVH). Intraventricular administration of LPA caused elevated brain water content and ventriculomegaly in experimental rats, via its action as an agonist of the choroidal transient receptor potential vanilloid 4 (TRPV4) channel. TRPV4 was revealed as a novel regulator of ICP in experimental rats via its ability to modulate the CSF secretion rate through its direct activation of the Na+/K+/2Cl- cotransporter (NKCC1) implicated in CSF secretion. CONCLUSIONS: Together, our data reveal that a serum lipid present in brain pathologies with hemorrhagic events promotes CSF hypersecretion and ensuing brain water accumulation via its direct action on TRPV4 and its downstream regulation of NKCC1. TRPV4 may therefore be a promising future pharmacological target for pathologies involving brain water accumulation.


Asunto(s)
Hidrocefalia , Hemorragia Subaracnoidea , Animales , Hemorragia Cerebral/complicaciones , Hidrocefalia/cirugía , Lisofosfolípidos , Ratas , Hemorragia Subaracnoidea/complicaciones , Canales Catiónicos TRPV , Agua
8.
Fluids Barriers CNS ; 19(1): 65, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038945

RESUMEN

BACKGROUND: Disturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the details underlying the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. METHODS: Experimental rats were employed for in vivo determinations of CSF secretion rates, ICP, blood pressure and ex vivo excised choroid plexus for morphological analysis and quantification of expression and activity of various transport proteins. CSF and blood extractions from rats, pigs, and humans were employed for osmolality determinations and a mathematical model employed to determine a contribution from potential local gradients at the surface of choroid plexus. RESULTS: We demonstrate that CSF secretion can occur independently of conventional osmosis and that local osmotic gradients do not suffice to support CSF secretion. Instead, the CSF secretion across the luminal membrane of choroid plexus relies approximately equally on the Na+/K+/2Cl- cotransporter NKCC1, the Na+/HCO3- cotransporter NBCe2, and the Na+/K+-ATPase, but not on the Na+/H+ exchanger NHE1. We demonstrate that pharmacological modulation of CSF secretion directly affects the ICP. CONCLUSIONS: CSF secretion appears to not rely on conventional osmosis, but rather occur by a concerted effort of different choroidal transporters, possibly via a molecular mode of water transport inherent in the proteins themselves. Therapeutic modulation of the rate of CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP.


Asunto(s)
Presión Intracraneal , Proteínas de Transporte de Membrana , Animales , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Humanos , Presión Intracraneal/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ósmosis , Ratas , Sodio/metabolismo , Porcinos
10.
Fluids Barriers CNS ; 19(1): 62, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948938

RESUMEN

INTRODUCTION: Posthemorrhagic hydrocephalus (PHH) often develops following hemorrhagic events such as intraventricular hemorrhage (IVH) and subarachnoid hemorrhage (SAH). Treatment is limited to surgical diversion of the cerebrospinal fluid (CSF) since no efficient pharmacological therapies are available. This limitation follows from our incomplete knowledge of the molecular mechanisms underlying the ventriculomegaly characteristic of PHH. Here, we aimed to elucidate the molecular coupling between a hemorrhagic event and the subsequent PHH development, and reveal the inflammatory profile of the PHH pathogenesis. METHODS: CSF obtained from patients with SAH was analyzed for inflammatory markers using the proximity extension assay (PEA) technique. We employed an in vivo rat model of IVH to determine ventricular size, brain water content, intracranial pressure, and CSF secretion rate, as well as for transcriptomic analysis. Ex vivo radio-isotope assays of choroid plexus transport were employed to determine the direct effect of choroidal exposure to blood and inflammatory markers, both with acutely isolated choroid plexus and after prolonged exposure obtained with viable choroid plexus kept in tissue culture conditions. RESULTS: The rat model of IVH demonstrated PHH and associated CSF hypersecretion. The Na+/K+-ATPase activity was enhanced in choroid plexus isolated from IVH rats, but not directly stimulated by blood components. Inflammatory markers that were elevated in SAH patient CSF acted on immune receptors upregulated in IVH rat choroid plexus and caused Na+/K+/2Cl- cotransporter 1 (NKCC1) hyperactivity in ex vivo experimental conditions. CONCLUSIONS: CSF hypersecretion may contribute to PHH development, likely due to hyperactivity of choroid plexus transporters. The hemorrhage-induced inflammation detected in CSF and in the choroid plexus tissue may represent the underlying pathology. Therapeutic targeting of such pathways may be employed in future treatment strategies towards PHH patients.


Asunto(s)
Hidrocefalia , Animales , Biomarcadores/metabolismo , Hemorragia Cerebral/complicaciones , Plexo Coroideo/metabolismo , Hidrocefalia/cirugía , Inflamación/metabolismo , Ratas
11.
Fluids Barriers CNS ; 19(1): 44, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659263

RESUMEN

BACKGROUND: Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus. METHODS: The transcriptomic profile of rat choroid plexus was generated by RNA Sequencing (RNAseq) of whole tissue and epithelial cells captured by fluorescence-activated cell sorting (FACS), and compared to proximal tubules. The bioinformatic analysis comprised mapping to reference genome followed by filtering for type, location, and association with alias and protein function. The transporters and associated regulatory modules were arranged in discovery tables according to their transcriptional abundance and tied together in association network analysis. RESULTS: The transcriptomic profile of choroid plexus displays high similarity between sex and species (human, rat, and mouse) and lesser similarity to another high-capacity fluid-transporting epithelium, the proximal tubules. The discovery tables provide lists of transport mechanisms that could participate in CSF secretion and suggest regulatory candidates. CONCLUSIONS: With quantification of the transport protein transcript abundance in choroid plexus and their potentially linked regulatory modules, we envision a molecular tool to devise rational hypotheses regarding future delineation of choroidal transport proteins involved in CSF secretion and their regulation. Our vision is to obtain future pharmaceutical targets towards modulation of CSF production in pathologies involving disturbed brain water dynamics.


Asunto(s)
Encéfalo , Plexo Coroideo , Animales , Transporte Biológico/fisiología , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Ratones , Ratas
12.
Fluids Barriers CNS ; 19(1): 53, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768824

RESUMEN

BACKGROUND: Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, acetazolamide (AZE), may be employed to treat elevated ICP. However, its effectiveness is questioned, its location of action unresolved, and its tolerability low. Here, we determined the efficacy and mode of action of AZE in the rat . METHODS: We employed in vivo approaches including ICP and cerebrospinal fluid secretion measurements in anaesthetized rats and telemetric monitoring of ICP and blood pressure in awake rats in combination with ex vivo choroidal radioisotope flux assays and transcriptomic analysis. RESULTS: AZE effectively reduced the ICP, irrespective of the mode of drug administration and level of anaesthesia. The effect appeared to occur via a direct action on the choroid plexus and an associated decrease in cerebrospinal fluid secretion, and not indirectly via the systemic action of AZE on renal and vascular processes. Upon a single administration, the reduced ICP endured for approximately 10 h post-AZE delivery with no long-term changes of brain water content or choroidal transporter expression. However, a persistent reduction of ICP was secured with repeated AZE administrations throughout the day. CONCLUSIONS: AZE lowers ICP directly via its ability to reduce the choroid plexus CSF secretion, irrespective of mode of drug administration.


Asunto(s)
Hipertensión Intracraneal , Presión Intracraneal , Acetazolamida/metabolismo , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Hipertensión Intracraneal/tratamiento farmacológico , Presión Intracraneal/fisiología , Ratas
13.
Commun Biol ; 4(1): 1347, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853399

RESUMEN

The dire need for COVID-19 treatments has inspired strategies of repurposing approved drugs. Amantadine has been suggested as a candidate, and cellular as well as clinical studies have indicated beneficial effects of this drug. We demonstrate that amantadine and hexamethylene-amiloride (HMA), but not rimantadine, block the ion channel activity of Protein E from SARS-CoV-2, a conserved viroporin among coronaviruses. These findings agree with their binding to Protein E as evaluated by solution NMR and molecular dynamics simulations. Moreover, we identify two novel viroporins of SARS-CoV-2; ORF7b and ORF10, by showing ion channel activity in a X. laevis oocyte expression system. Notably, amantadine also blocks the ion channel activity of ORF10, thereby providing two ion channel targets in SARS-CoV-2 for amantadine treatment in COVID-19 patients. A screen of known viroporin inhibitors on Protein E, ORF7b, ORF10 and Protein 3a from SARS-CoV-2 revealed inhibition of Protein E and ORF7b by emodin and xanthene, the latter also blocking Protein 3a. This illustrates a general potential of well-known ion channel blockers against SARS-CoV-2 and specifically a dual molecular basis for the promising effects of amantadine in COVID-19 treatment. We therefore propose amantadine as a novel, cheap, readily available and effective way to treat COVID-19.


Asunto(s)
Amantadina/farmacología , Amilorida/análogos & derivados , Antivirales/farmacología , Rimantadina/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/fisiología , Amilorida/farmacología , Canales Iónicos/fisiología
15.
J Lipid Res ; 62: 100145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34710431

RESUMEN

Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-ß-cyclodextrin (MßCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MßCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MßCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Canales Catiónicos TRPV/metabolismo , Anciano , Animales , Membrana Celular/química , Células Cultivadas , Humanos , Masculino , Mecanotransducción Celular , Canales Catiónicos TRPV/genética , Xenopus laevis
16.
Front Immunol ; 12: 730982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616399

RESUMEN

The transient receptor potential vanilloid 4 channel (TRPV4) is a non-selective cation channel that is widely expressed and activated by a range of stimuli. Amongst these stimuli, changes in cell volume feature as a prominent regulator of TRPV4 activity with cell swelling leading to channel activation. In experimental settings based on abrupt introduction of large osmotic gradients, TRPV4 activation requires co-expression of an aquaporin (AQP) to facilitate such cell swelling. However, TRPV4 readily responds to cell volume increase irrespectively of the molecular mechanism underlying the cell swelling and can, as such, be considered a sensor of increased cell volume. In this review, we will discuss the proposed events underlying the molecular coupling from cell swelling to channel activation and present the evidence of direct versus indirect swelling-activation of TRPV4. With this summary of the current knowledge of TRPV4 and its ability to sense cell volume changes, we hope to stimulate further experimental efforts in this area of research to clarify TRPV4's role in physiology and pathophysiology.


Asunto(s)
Tamaño de la Célula , Activación del Canal Iónico , Mecanotransducción Celular , Canales Catiónicos TRPV/metabolismo , Animales , Humanos , Mediadores de Inflamación/metabolismo , Osmorregulación
17.
Cells ; 10(1)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467654

RESUMEN

The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.


Asunto(s)
Perfilación de la Expresión Génica , Canales Catiónicos TRPV/metabolismo , Animales , Enfermedades del Desarrollo Óseo/metabolismo , Regulación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Ligandos , Lípidos , Ratones , Mutación , Fosforilación , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , Temperatura
18.
Glia ; 69(1): 28-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32506554

RESUMEN

The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 µM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.


Asunto(s)
Neuroglía , Animales , Acuaporina 4/genética , Acuaporinas , Astrocitos/metabolismo , Edema , Ratones , Neuroglía/metabolismo , Isoformas de Proteínas , Ratas , Agua/metabolismo
19.
Sci Rep ; 10(1): 18041, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093500

RESUMEN

Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1ß ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1ß ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1ß:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1ß ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Calcio/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/fisiología , Moléculas de Adhesión de Célula Nerviosa/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidad , Estimulación Química
20.
J Physiol ; 598(2): 361-379, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31698505

RESUMEN

KEY POINTS: The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT: Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.


Asunto(s)
Conexinas/fisiología , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Colorantes Fluorescentes , Ácido Glutámico , Células HEK293 , Humanos , Ácido Láctico , Oocitos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...