Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 14(13): e5023, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007158

RESUMEN

In recent years, the increase in genome sequencing across diverse plant species has provided a significant advantage for phylogenomics studies, allowing the analysis of one of the most diverse gene families in plants: nucleotide-binding leucine-rich repeat receptors (NLRs). However, due to the sequence diversity of the NLR gene family, identifying key molecular features and functionally conserved sequence patterns is challenging through multiple sequence alignment. Here, we present a step-by-step protocol for a computational pipeline designed to identify evolutionarily conserved motifs in plant NLR proteins. In this protocol, we use a large-scale NLR dataset, including 1,862 NLR genes annotated from monocot and dicot species, to predict conserved sequence motifs, such as the MADA and EDVID motifs, within the coiled-coil (CC)-NLR subfamily. Our pipeline can be applied to identify molecular signatures that have remained conserved in the gene family over evolutionary time across plant species. Key features • Phylogenomics analysis of plant NLR immune receptor family. • Identification of functionally conserved sequence patterns among plant NLRs.

2.
Science ; 381(6660): 891-897, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616352

RESUMEN

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Asunto(s)
Phytophthora infestans , Inmunidad de la Planta , Receptores Inmunológicos , Solanum tuberosum , Ligandos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
3.
EMBO Rep ; 24(10): e57495, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37602936

RESUMEN

Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.


Asunto(s)
Proteínas NLR , Fitomejoramiento , Proteínas NLR/genética , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Plantas/genética , Plantas/metabolismo , Proteínas Portadoras/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química
4.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134163

RESUMEN

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioingeniería
5.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656829

RESUMEN

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Inmunidad de la Planta/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA