Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686103

RESUMEN

Tendinopathies are common disabling conditions in equine and human athletes. The etiology is still unclear, although reactive oxygen species (ROS) and oxidative stress (OS) seem to play a crucial role. In addition, OS has been implicated in the failure of tendon lesion repair. Platelet-rich plasma (PRP) is rich in growth factors that promote tissue regeneration. This is a promising therapeutic approach in tendon injury. Moreover, growing evidence has been attributed to PRP antioxidant effects that can sustain tissue healing. In this study, the potential antioxidant effects of PRP in tenocytes exposed to oxidative stress were investigated. The results demonstrated that PRP reduces protein and lipid oxidative damage and protects tenocytes from OS-induced cell death. The results also showed that PRP was able to increase nuclear levels of redox-dependent transcription factor Nrf2 and to induce some antioxidant/phase II detoxifying enzymes (superoxide dismutase 2, catalase, heme oxygenase 1, NAD(P)H oxidoreductase quinone-1, glutamate cysteine ligase catalytic subunit and glutathione, S-transferase). Moreover, PRP also increased the enzymatic activity of catalase and glutathione S-transferase. In conclusion, this study suggests that PRP could activate various cellular signaling pathways, including the Nrf2 pathway, for the restoration of tenocyte homeostasis and to promote tendon regeneration and repair following tendon injuries.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Animales , Plaquetas , Catalasa , Caballos , Tenocitos
2.
J Proteomics ; 283-284: 104928, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37207814

RESUMEN

Tuberous sclerosis complex (TSC) is a rare, multisystem genetic disorder that leads to the development of benign tumors in multiple organs and neurological symptoms. TSC clinical manifestations show a great heterogenicity, with most patients presenting severe neuropsychiatric and neurological disorders. TSC is caused by loss-of-function mutations in either TSC1 or TSC2 genes, leading to overexpression of the mechanistic target of rapamycin (mTOR) and, consequently, abnormal cellular growth, proliferation and differentiation as well as to cell migration defects. Beside the growing interest, TSC remains a disorder poorly understood, with limited perspectives in the field of therapeutic strategies. Here we used murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene as a TSC model to unravel novel molecular aspects of the pathophysiology of this disease. 2D-DIGE-based proteomic analysis detected 55 differently represented spots in Tsc1-deficient cells, compared to wild-type counterparts, which were associated with 36 protein entries after corresponding trypsinolysis and nanoLC-ESI-Q-Orbitrap-MS/MS analysis. Proteomic results were validated using various experimental approaches. Bioinformatics associated differently represented proteins with oxidative stress and redox pathways, methylglyoxal biosynthesis, myelin sheath, protein S-nitrosylation and carbohydrate metabolism. Because most of these cellular pathways have already been linked to TSC features, these results were useful to clarify some molecular aspects of TSC etiopathogenesis and suggested novel promising therapeutic protein targets. SIGNIFICANCE: Tuberous Sclerosis Complex (TSC) is a multisystemic disorder caused by inactivating mutations of TSC1 or TSC2 genes, which induce overactivation of the mTOR component. The molecular mechanisms underlying the pathogenesis of TSC remain unclear, probably due to complexity of mTOR signaling network. To have a picture of protein abundance changes occurring in TSC disorder, murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene were used as a model of disease. Thus, Tsc1-deficient SVZ NSPCs and wild-type cells were comparatively evaluated by proteomics. This analysis evidenced changes in the abundance of proteins involved in oxidative/nitrosative stress, cytoskeleton remodelling, neurotransmission, neurogenesis and carbohydrate metabolism. These proteins might clarify novel molecular aspects of TSC etiopathogenesis and constitute putative molecular targets for novel therapeutic management of TSC-related disorders.


Asunto(s)
Células-Madre Neurales , Esclerosis Tuberosa , Ratones , Humanos , Animales , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Serina-Treonina Quinasas TOR/metabolismo
3.
Antibiotics (Basel) ; 12(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107107

RESUMEN

Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria, which contain different cargo molecules and mediate several biological processes. Recent studies have shown that OMVs are involved in antibiotic-resistance (AR) mechanisms by including ß-lactamase enzymes in their lumen. Since no studies have as yet been conducted on Salmonella enterica subs. enterica serovar Infantis' OMVs, the aim of the work was to collect OMVs from five S. Infantis ß-lactam resistant strains isolated from a broiler meat production chain and to investigate whether ß-lactamase enzymes are included in OMVs during their biogenesis. OMVs were isolated by means of ultrafiltration and a Nitrocefin assay quantified the presence of ß-lactamase enzymes in the OMVs. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to identify the OMVs. The results showed that all strains release spherical OMVs, ranging from 60 to 230 nm. The Nitrocefin assay highlighted the presence of ß-lactamase enzymes within the OMVs. This suggests that ß-lactamase enzymes also get packaged into OMVs from bacterial periplasm during OMV biogenesis. An investigation into the possible role played by OMVs in AR mechanisms would open the door for an opportunity to develop new, therapeutic strategies.

4.
Life (Basel) ; 13(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36836757

RESUMEN

The characterization of the protein and lipid cargo of milk extracellular vesicles from different mammal species is crucial for understanding their biogenesis and biological functions, as well as for a comprehensive description of the nutritional aspects of animal milk for human diet. In fact, milk EVs have been reported to possess relevant biological effects, but the molecules/biochemical pathways underlying these effects have been poorly investigated. The biochemical characterization is an important initial step for the potential therapeutic and diagnostic use of natural or modified milk EVs. The number of studies analysing the protein and lipid composition of milk EVs is limited compared to that investigating the nucleic acid cargo. Here, we revised the literature regarding the protein and lipid content of milk EVs. Until now, most investigations have shown that the biochemical cargo of EVs is different with respect to that of other milk fractions. In addition, even if these studies derived mostly from bovine and human milk EVs, comparison between milk EVs from different animal species and milk EVs biochemical composition changes due to different factors including lactation stages and health status is also beginning to be reported.

5.
Eur J Cell Biol ; 102(1): 151285, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36584599

RESUMEN

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.


Asunto(s)
Fumar Cigarrillos , Vesículas Extracelulares , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fumar Cigarrillos/efectos adversos , Línea Celular , Células Epiteliales/metabolismo , Proteínas/metabolismo , Nicotiana/efectos adversos , Vesículas Extracelulares/metabolismo , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología
6.
Biomedicines ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552020

RESUMEN

Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.

7.
Front Vet Sci ; 9: 878949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937296

RESUMEN

The tumor microenvironment is a complex system, where neoplastic cells interact with immune and stromal cells. Tumor-associated macrophages (TAMs) are considered among the most numerically and biologically noteworthy cellular components in tumors and the attention on this cellular population has been growing during the last decade, both for its prognostic role and as a potential future therapeutic target. Melanoma, particularly the oral form, despite being one of the most immunogenic tumors, bears a poor prognosis in dogs and humans, due to its highly aggressive biological behavior and limited therapeutic options. The aims of this study are to characterize and quantify TAMs (using CD163, CD204, Iba1, and MAC387) in canine melanocytic tumors and to evaluate the association of these markers with diagnosis, histologic prognostic features, presence of metastases, and outcome, and to provide preliminary data for possible future therapies targeting TAMs. Seventy-two melanocytic tumors (27 oral melanomas, 25 cutaneous melanomas, 14 cutaneous melanocytomas, and 6 oral melanocytomas) were retrospectively selected and submitted to immunohistochemistry and double immunofluorescence. Double immunolabeling revealed that most CD163+ and CD204+cells co-expressed Iba1, which labeled also dendritic cells. Iba1 was instead rarely co-expressed with MAC387. Nevertheless, the expression of macrophagic markers showed a mild to moderate association among the four markers, except for CD204 and MAC387. The number of CD163+, CD204+, and MAC387+ cells was significantly higher in oral melanomas compared to oral melanocytomas (p < 0.001; p < 0.05 and p < 0.01, respectively), whereas Iba1 was differentially expressed in cutaneous melanomas and melanocytomas (p < 0.05). Moreover, CD163, IBA1 and MAC387 expression was associated with nuclear atypia and mitotic count. The number of CD163+cells was associated with the presence of metastases and tumor-related death in oral melanocytic tumors (p < 0.05 and p = 0.001, respectively).

8.
Genes (Basel) ; 12(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34946914

RESUMEN

Physical exercise has been associated with the modulation of micro RNAs (miRNAs), actively released in body fluids and recognized as accurate biomarkers. The aim of this study was to measure serum miRNA profiles in 18 horses taking part in endurance competitions, which represents a good model to test metabolic responses to moderate intensity prolonged efforts. Serum levels of miRNAs of eight horses that were eliminated due to metabolic unbalance (Non Performer-NP) were compared to those of 10 horses that finished an endurance competition in excellent metabolic condition (Performer-P). Circulating miRNA (ci-miRNA) profiles in serum were analyzed through sequencing, and differential gene expression analysis was assessed comparing NP versus P groups. Target and pathway analysis revealed the up regulation of a set of miRNAs (of mir-211 mir-451, mir-106b, mir-15b, mir-101-1, mir-18a, mir-20a) involved in the modulation of myogenesis, cardiac and skeletal muscle remodeling, angiogenesis, ventricular contractility, and in the regulation of gene expression. Our preliminary data open new scenarios in the definition of metabolic adaptations to the establishment of efficient training programs and the validation of athletes' elimination from competitions.


Asunto(s)
Biomarcadores/metabolismo , MicroARN Circulante/genética , Regulación de la Expresión Génica , Caballos/fisiología , Enfermedades Metabólicas/fisiopatología , Condicionamiento Físico Animal , Transcriptoma , Animales , Femenino , Masculino , Resistencia Física , Proyectos Piloto
9.
Animals (Basel) ; 11(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34359249

RESUMEN

In horses, penile squamous cell carcinomas (epSCCs) are among the most common cutaneous neoplastic lesions. These tumors usually arise in benign lesions such as viral plaques and papillomas frequently induced by Equus caballus papillomavirus type 2 (EcPV2) infection. In the last decade, the introduction of immune checkpoint inhibitors (ICI) for the treatment of human cancers has demonstrated promising results. Among the most commonly targeted pathways, there is PD-1/PD-L1 and CTLA-4. The aim of this study is to investigate the expression of the PD-1/PD-L1 pathway and CTLA-4 in the tumor microenvironment of epSCCs to assess the feasibility of an immunotherapeutic approach. Twenty equine epithelial tumors were retrospectively selected and submitted to RT-qPCR for PD-1 and PD-L1 genes. After testing antibodies cross-reactivity by western blotting, immunohistochemistry for PD-L1 and CTLA-4 was performed. Results from RT-qPCR demonstrated that 3/20 cases expressed the PD-L1 gene, whereas the PD-1 gene was not detected. Immunohistochemical positivity for PD-L1 was found only in one case. CTLA-4-positive cells were observe in all cases but were few (Mdn = 4.8; IQR = 2.3-7.1 cells/HPF). In this study group, PD-1/PD-L1 and CTLA-4 do not appear to be highly expressed and therefore the use of ICI in epSCCs may not have promising rates of response.

10.
Cells ; 10(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34359933

RESUMEN

Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.


Asunto(s)
Vesículas Extracelulares/fisiología , Estrés Oxidativo , Animales , Enfermedad , Humanos , Modelos Biológicos , Oxidación-Reducción , Transducción de Señal
11.
J Proteomics ; 228: 103927, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32768606

RESUMEN

Osteochondrosis is a developmental orthopedic disease affecting growing cartilage in young horses. In this study we compared the proteomes of equine chondrocytes obtained from healthy and osteochondrotic cartilage using a label-free mass spectrometry approach. Quantitative changes of some proteins selected for their involvement in different functional pathways highlighted by the bioinformatics analysis, were validated by western blotting, while biochemical alterations of extracellular matrix were confirmed via Raman spectroscopy analysis. In total 1637 proteins were identified, of which 59 were differentially abundant. Overall, the results highlighted differentially represented proteins involved in metabolic and functional pathways that may be related to the failure of the endochondral ossification process occurring in osteochondrosis. In particular, we identified proteins involved in extracellular matrix degradation and organization, vitamin metabolism, osteoblast differentiation, apoptosis, protein folding and localization, signalling and gene expression modulation and lysosomal activities. These results provide valuable new insights to elucidate the underlying molecular mechanisms associated with the development and progression of osteochondrosis. SIGNIFICANCE: Osteochondrosis is a common articular disorder in young horses mainly due to defects in endochondral ossification. The pathogenesis of osteochondrosis is still poorly understood and only a limited number of proteomic studies have been conducted. This study provides a comprehensive characterization of proteomic alterations occurring in equine osteochondrotic chondrocytes, the only resident cell type that modulates differentiation and maturation of articular cartilage. The results evidenced alterations in abundance of proteins involved in functional and metabolic pathways and in extracellular matrix remodelling. These findings could help clarify some molecular aspects of osteochondrosis and open new fields of research for elucidating the pathogenesis of this disease.


Asunto(s)
Cartílago Articular , Osteocondrosis , Animales , Condrocitos , Caballos , Osteocondrosis/veterinaria , Proteoma , Proteómica
12.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316110

RESUMEN

Oxidative stress is considered to be a key factor of the pathogenesis of Parkinson's disease, a multifactorial neurodegenerative disorder characterized by reduced dopaminergic neurons in the substantia nigra pars compacta and accumulated protein aggregates. Rotenone is a worldwide-used pesticide that induces the most common features of Parkinson's by direct inhibition of the mitochondrial complex I. Rotenone-induced Parkinson's models, as well as brain tissues from Parkinson's patients, are characterized by the presence of both lipid peroxidation and protein oxidation markers resulting from the increased level of free radical species. Oxidation introduces several modifications in protein structure, including carbonylation and nitrotyrosine formation, which severely compromise cell function. Due to the link existing between oxidative stress and Parkinson's disease, antioxidant molecules could represent possible therapeutic tools for this disease. In this study, we evaluated the effect of curcumin, a natural compound known for its antioxidant properties, in dopaminergic PC12 cells treated with rotenone, a cell model of Parkinsonism. Our results demonstrate that the treatment of PC12 cells with rotenone causes severe protein damage, with formation of both carbonylated and nitrotyrosine-derived proteins, whereas curcumin (10 µM) co-exposure exerts protective effects by reducing the levels of oxidized proteins. Curcumin also promotes proteasome activation, abolishing the inhibitory effect exerted by rotenone on this degradative system.


Asunto(s)
Curcumina/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Rotenona/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Modelos Biológicos , Células PC12 , Carbamilación de Proteína/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...