Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
IJID Reg ; 6: 24-28, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36448028

RESUMEN

Background: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants may have contributed to prolonging the pandemic, and increasing morbidity and mortality related to coronavirus disease 2019 (COVID-19). This article describes the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves in Mali between April and October 2021. Methods: The respiratory SARS-CoV-2 complete spike (S) gene from positive samples was sequenced. Generated sequences were aligned by Variant Reporter v3.0 using the Wuhan-1 strain as the reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0% (1008/16,797) tested positive for SARS-CoV-2 on quantitative reverse transcription polymerase chain reaction. Of these, 16.07% (162/1008) had a cycle threshold value ≤28 and were amplified and sequenced. The complete S gene sequence was recovered from 80 of 162 (49.8%) samples. Seven distinct variants were identified: Delta (62.5%), Alpha (1.2%), Beta (1.2%), Eta (30.0%), 20B (2.5%), 19B (1.2%) and 20A (1.2%). Conclusions and perspectives: Several SARS-CoV-2 variants were present during the COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

2.
Viruses ; 14(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35062306

RESUMEN

In Mali, a country in West Africa, cumulative confirmed COVID-19 cases and deaths among healthcare workers (HCWs) remain enigmatically low, despite a series of waves, circulation of SARS-CoV-2 variants, the country's weak healthcare system, and a general lack of adherence to public health mitigation measures. The goal of the study was to determine whether exposure is important by assessing the seroprevalence of anti-SARS-CoV-2 IgG antibodies in HCWs. The study was conducted between November 2020 and June 2021. HCWs in the major hospitals where COVID-19 cases were being cared for in the capital city, Bamako, Mali, were recruited. During the study period, vaccinations were not yet available. The ELISA of the IgG against the spike protein was optimized and quantitatively measured. A total of 240 HCWs were enrolled in the study, of which seropositivity was observed in 147 cases (61.8%). A continuous increase in the seropositivity was observed, over time, during the study period, from 50% at the beginning to 70% at the end of the study. HCWs who provided direct care to COVID-19 patients and were potentially highly exposed did not have the highest seropositivity rate. Vulnerable HCWs with comorbidities such as obesity, diabetes, and asthma had even higher seropositivity rates at 77.8%, 75.0%, and 66.7%, respectively. Overall, HCWs had high SARS-CoV-2 seroprevalence, likely reflecting a "herd" immunity level, which could be protective at some degrees. These data suggest that the low number of cases and deaths among HCWs in Mali is not due to a lack of occupational exposure to the virus but rather related to other factors that need to be investigated.


Asunto(s)
COVID-19/epidemiología , Personal de Salud , Exposición Profesional/análisis , Adulto , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Femenino , Hospitales , Humanos , Inmunoglobulina G/sangre , Masculino , Malí/epidemiología , Oportunidad Relativa , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos
3.
Int J Infect Dis ; 81: 149-155, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30772470

RESUMEN

BACKGROUND: MDR-TB is a major threat to global TB control. In 2015, 580,000 were treated for MDR-TB worldwide. The worldwide roll-out of GeneXpert MTB/RIF® has improved diagnosis of MDR-TB; however, in many countries laboratories are unable to assess drug resistance and clinical predictors of MDR-TB could help target suspected patients. In this study, we aimed to determine the clinical factors associated with MDR-TB in Bamako, Mali. METHODS: We performed a cross-sectional study of 214 patients with presumed MDR-TB admitted to University of Bamako Teaching Hospital, Point-G between 2007 and 2016. We calculated crude and adjusted odds ratios for MDR-TB disease diagnosis using SPSS. RESULTS: We found that age ≤40years (OR=2.56. 95% CI: 1.44-4.55), two courses of prior TB treatment (OR=3.25, 95% CI: 1.44-7.30), TB treatment failure (OR=3.82, 95% CI 1.82-7.79), sputum microscopy with 3+ bacilli load (OR=1.98, 95% CI: 1.13-3.48) and a history of contact with a TB patient (OR=2.48, 95% CI: 1.11-5.50) were significantly associated with confirmation of MDR-TB disease. HIV was not a risk factor for MDR-TB (aOR=0.88, 95% CI: 0.34-1.94). CONCLUSION: We identified several risk factors that could be used to identify MDR-TB suspects and prioritize them for laboratory confirmation. Prospective studies are needed to understand factors associated with TB incidence and clinical outcomes of TB treatment and disease.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos/etiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
4.
HLA ; 93(1): 24-31, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30516034

RESUMEN

Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC), however, the distribution and frequency of MTBC lineages and sublineages vary in different parts of the globe. Mycobacterium africanum, a member of MTBC is responsible for a large percentage of TB cases in West Africa, however, it is rarely identified outside of this part of the World. Whether or not differential HLA polymorphism (an important host factor) is contributing to the geographic restriction of M. africanum to West Africa is unknown. Here, we conducted a cohort study in Mali of newly diagnosed individuals with active pulmonary TB and normal healthy controls. The MTBC isolates were spoligotyped to determine the TB study groups (M. tuberculosis sensu stricto LAM10 and M. africanum), and HLA typing was performed on peripheral blood. Unlike previous reports on other populations, we found that HLA class-I alleles were significantly associated with active TB disease in this population. HLA-B alleles (B*07:02, B*08:01, B*14:02, B*15:03, B*15:10, B*18:01, B*42:01, B*42:02, B*51:01 and B*81:01) were significantly associated with M. africanum (40%-45%) and M. tuberculosis (75%) compared with healthy controls. Many HLA-A alleles (A*02:05, A*34:02, A*66:01 and A*68:02) were also associated with both TB groups (65%-70%). However, many class II HLA-DR variants were found to be associated with M. tuberculosis but not M. africanum with the exception of the DRB1*03:01, which was associated with both groups. The differential HLA distribution observed in this study might be at least partially responsible for the geographical restriction of M. africanum infections to West Africa.


Asunto(s)
Genotipo , Antígenos HLA/genética , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/genética , Adolescente , Adulto , Anciano , Técnicas de Tipificación Bacteriana , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Prueba de Histocompatibilidad , Humanos , Masculino , Malí , Persona de Mediana Edad , Polimorfismo Genético , Estudios Prospectivos , Especificidad de la Especie , Tuberculosis Pulmonar/inmunología , Adulto Joven
5.
J Infect Dis ; 214(suppl 3): S164-S168, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707892

RESUMEN

Aware of the rapid spread of Ebola virus (EBOV) during the current West African epidemic, Mali took several proactive steps to rapidly identify cases within its borders. Under the Mali International Center for Excellence in Research program, a collaboration between the National Institute of Allergy and Infectious Diseases and the Malian Ministry of Higher Education and Scientific Research established a national EBOV diagnostic site at the University of Sciences, Techniques and Technologies of Bamako in the SEREFO Laboratory. Two separate introductions of EBOV occurred in Mali from neighboring Guinea, but both chains of transmission were quickly halted, and Mali was declared "Ebola free" on 18 January 2015 and has remained so since. The SEREFO Laboratory was instrumental in the success of Mali's Ebola response by providing timely and accurate diagnostics. As of today, the SEREFO Laboratory has tested 103 samples from 88 suspected cases, 10 of which were EBOV positive, since the Ebola diagnostics unit started in April 2014. The establishment of Ebola diagnostics in the SEREFO Laboratory, safety precautions, and diagnostics are described.


Asunto(s)
Servicios de Laboratorio Clínico/organización & administración , Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Ebolavirus/genética , Guinea , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Malí/epidemiología , Manejo de Especímenes
6.
BMC Vet Res ; 12(1): 145, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27439708

RESUMEN

BACKGROUND: Bovine tuberculosis (BTB) is a contagious, debilitating human and animal disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex. The study objective were to estimate the frequency of BTB, examine genetic diversity of the M. bovis population in cattle from five regions in Mali and to determine whether M. bovis is involved in active tuberculosis (TB) in humans. Samples from suspected lesions on cattle at the slaughterhouses were collected. Mycobacterial smear, culture confirmation, and spoligotyping were used for diagnosis and species identification. Mycobacterium DNA from TB patients was spoligotyped to identify M. bovis. RESULTS: In total, 675 cattle have been examined for lesions in the five regions of Mali. Out of 675 cattle, 79 specimens presented lesions and then examined for the presence of M. bovis. Thus, 19 (24.1 %) were identified as M. bovis; eight (10.1 %) were non-tuberculous Mycobacterium (NTM). Nineteen spoligotype patterns were identified among 79 samples with five novel patterns. One case of M. bovis (spoligotype pattern SB0300) was identified among 67 TB patients. CONCLUSION: This study estimates a relatively true proportion of BTB in the regions of Mali and reveals new spoligotype patterns.


Asunto(s)
Variación Genética , Mycobacterium bovis/genética , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis/epidemiología , Tuberculosis/microbiología , Animales , Técnicas de Tipificación Bacteriana , Bovinos , Humanos , Malí/epidemiología , Repeticiones de Minisatélite/genética , Mycobacterium bovis/aislamiento & purificación , Tuberculosis/patología , Tuberculosis Bovina/patología
7.
Int J Mycobacteriol ; 5 Suppl 1: S42-S43, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28043602

RESUMEN

OBJECTIVE/BACKGROUND: The recent call for universal drug susceptibility testing (DST) for all tuberculosis (TB) patients will be difficult to meet in settings where Xpert rollout is limited, such as low prevalence of HIV and Multi-drug Resistant Tuberculosis (MDR) settings. As recommended by World Health Organization (WHO) guidelines, the success of TB treatment is measured by Ziehl-Neelsen (ZN) microscopy or auramine-rhodamine fluorescent microscopy (FM) on sputum, in which conversion to negative smear at 2months (M) is an important predictor of treatment success, defined as a negative smear at 5M. The sputum smear that fails to convert to negative at 5M are screened for rifampicin resistance. We tested in a prospective study whether an early screen for rifampicin resistance, based on FM results at 2M, could detect MDR patients early, rather than screening all patients with GeneXpert MTB/Rif at baseline. METHODS: Between February 2015 and August 2016, we enrolled new TB patients in an IRB-approved prospective cohort study at four health centers in Bamako district. Fresh sputum samples were collected at 2M and 5M to measure FM smear conversion. Patients who failed to show a decline in FM positivity at 2M (moderate or many Acid Fast Bacilli (AFB)) had their sputum tested in GeneXpert to detect rifampicin resistance. Patients who had any AFB seen at 5M were also tested using GeneXpert. RESULTS: Of the 570 patients who were enrolled in the study, 22 (3.8%) died and 27 (4.7%) were lost to follow-up. The prevalence of HIV and TB coinfection was 12.4%, and 65.6% of the patients were male. At 2M, 32 out of 429 patients still had moderate or many AFBs in FM, and were screened by Xpert, of whom 5 (15.6%) tested rifampicin-resistant and were referred for MDR treatment. Of the 310 patients who completed 5M of treatment, 35 (11.3%) met the definition of failure (few or moderate AFB in FM) and had their sputum tested in Xpert; moreover, four (11.4%) demonstrated rifampicin resistance. In total, 67 (21.6% of 310) patients were screened by Xpert, of whom nine were detected to have MDR (or 13.4% of those screened). CONCLUSION: Although we cannot exclude additional MDR patients having been missed by our screening strategy, our screening algorithm at 2M detected five out of nine MDR patients. Detecting patients at 2M allowed for earlier referral, and potentially less acquired drug resistance and lower mortality. This strategy may be advantageous while awaiting further rollout of Xpert machines that will permit universal DST.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...