Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207857

RESUMEN

Despite evidence for the superiority of twice-daily (BID) radiotherapy schedules, their utilization in practice remains logistically challenging. Hypofractionation (HFRT) is a commonly implemented alternative. We aim to compare the outcomes and toxicities in limited-stage small-cell lung cancer (LS-SCLC) patients treated with hypofractionated versus BID schedules. A bi-institutional retrospective cohort review was conducted of LS-SCLC patients treated with BID (45 Gy/30 fractions) or HFRT (40 Gy/15 fractions) schedules from 2007 to 2019. Overlap weighting using propensity scores was performed to balance observed covariates between the two radiotherapy schedule groups. Effect estimates of radiotherapy schedule on overall survival (OS), locoregional recurrence (LRR) risk, thoracic response, any ≥grade 3 (including lung, and esophageal) toxicity were determined using multivariable regression modelling. A total of 173 patients were included in the overlap-weighted analysis, with 110 patients having received BID treatment, and 63 treated by HFRT. The median follow-up was 20.4 months. Multivariable regression modelling did not reveal any significant differences in OS (hazard ratio [HR] 1.67, p = 0.38), LRR risk (HR 1.48, p = 0.38), thoracic response (odds ratio [OR] 0.23, p = 0.21), any ≥grade 3+ toxicity (OR 1.67, p = 0.33), ≥grade 3 pneumonitis (OR 1.14, p = 0.84), or ≥grade 3 esophagitis (OR 1.41, p = 0.62). HFRT, in comparison to BID radiotherapy schedules, does not appear to result in significantly different survival, locoregional control, or toxicity outcomes.

2.
Clin Transl Radiat Oncol ; 30: 43-49, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296000

RESUMEN

BACKGROUND & PURPOSE: Prophylactic cranial irradiation (PCI) is recommended for limited-stage small-cell lung cancer (LS-SCLC) patients with good response to concurrent chemoradiation. We report our institution's 20-year experience with this patient population and associated clinical outcomes. MATERIALS & METHODS: A retrospective cohort of consecutive LS-SCLC patients treated with curative intent chemoradiation at our institution (1997-2018) was reviewed. Overall survival (OS) was calculated using the Kaplan-Meier method, and significant covariates determined by the Cox proportional hazards model. Covariates predictive of PCI were determined using Fisher's exact test and the Mann-Whitney test. Brain failure risk (BFR) was calculated using the cumulative incidence method treating death as a competing event. Treatment cohorts (historic vs. contemporary) were stratified by the median year of diagnosis (2005). RESULTS: A total of 369 patients with LS-SCLC were identified, of which 278 patients were notionally PCI eligible. PCI was given to 196 patients (71%). Younger age was associated with PCI utilization (p < 0.001). PCI utilization rates did not change between the historic and contemporary treatment era (p = 0.11), whereas magnetic resonance imaging (MRI) use at baseline and follow-up became more prevalent in the contemporary era (p = <0.001). On multivariable analysis, PCI utilization was associated with improved OS (HR 1.88, 95% CI 1.32-2.69) and decreased BFR (HR 4.66, 95% CI 2.58-8.40). Patients who had MRI follow-up had a higher incidence of BFR (HR 0.35, 95% CI 0.18-0.66) in multivariable analyses. CONCLUSIONS: For LS-SCLC patients at our institution, PCI is more frequently utilized in younger patients, and the utilization rate did not change significantly over the past 20 years. PCI was independently associated with improved OS and lower BFR. Omission of PCI in LS-SCLC patients should not be routinely practiced in the absence of further prospective data.

3.
Elife ; 92020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33274713

RESUMEN

High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells' response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.


Asunto(s)
Antineoplásicos , Biomarcadores de Tumor/análisis , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/normas , Estadística como Asunto/métodos , Línea Celular Tumoral , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos
4.
NPJ Syst Biol Appl ; 5: 36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602313

RESUMEN

Personalised medicine has predominantly focused on genetically altered cancer genes that stratify drug responses, but there is a need to objectively evaluate differential pharmacology patterns at a subpopulation level. Here, we introduce an approach based on unsupervised machine learning to compare the pharmacological response relationships between 327 pairs of cancer therapies. This approach integrated multiple measures of response to identify subpopulations that react differently to inhibitors of the same or different targets to understand mechanisms of resistance and pathway cross-talk. MEK, BRAF, and PI3K inhibitors were shown to be effective as combination therapies for particular BRAF mutant subpopulations. A systematic analysis of preclinical data for a failed phase III trial of selumetinib combined with docetaxel in lung cancer suggests potential indications in pancreatic and colorectal cancers with KRAS mutation. This data-informed study exemplifies a method for stratified medicine to identify novel cancer subpopulations, their genetic biomarkers, and effective drug combinations.


Asunto(s)
Biomarcadores Farmacológicos/análisis , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación/efectos de los fármacos , Neoplasias/clasificación , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Aprendizaje Automático no Supervisado , Proteínas ras/genética
5.
EBioMedicine ; 47: 607-615, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31466916

RESUMEN

Big data problems are becoming more prevalent for laboratory scientists who look to make clinical impact. A large part of this is due to increased computing power, in parallel with new technologies for high quality data generation. Both new and old techniques of artificial intelligence (AI) and machine learning (ML) can now help increase the success of translational studies in three areas: drug discovery, imaging, and genomic medicine. However, ML technologies do not come without their limitations and shortcomings. Current technical limitations and other limitations including governance, reproducibility, and interpretation will be discussed in this article. Overcoming these limitations will enable ML methods to be more powerful for discovery and reduce ambiguity within translational medicine, allowing data-informed decision-making to deliver the next generation of diagnostics and therapeutics to patients quicker, at lowered costs, and at scale.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Investigación Biomédica Traslacional , Animales , Descubrimiento de Drogas , Genómica/métodos , Humanos , Imagen Molecular , Medicina de Precisión , Reproducibilidad de los Resultados , Investigación Biomédica Traslacional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...