Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Mycol ; 59(2): 210-213, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32785575

RESUMEN

Malassezia restricta and Malassezia globosa are lipid dependent commensal yeasts associated with dandruff. Antifungal actives such as zinc pyrithione are commonly used in antidandruff shampoos, although their efficacy is not clearly demonstrated. In this study, we assessed the efficacy of antifungal treatments on scalp Malassezia via a combination of culturomic and genomic detection methods. Zinc pyrithione inhibited Malassezia growth at low minimum inhibitory concentrations (MICs). In a longitudinal pilot study, quantitative polymerase chain reaction (qPCR) analysis showed a decrease in M. restricta on the scalp after zinc pyrithione treatment. These findings validate the antifungal efficacy of zinc pyrithione as a dandruff treatment. LAY ABSTRACT: Malassezia yeasts are associated with dandruff and seborrheic dermatitis. Zinc pyrithione is effective against Malassezia growth in vitro and when tested on human skin as a shampoo. These findings will be useful for investigating the role of Malassezia in skin microbiome intervention studies.


Asunto(s)
Antifúngicos/farmacología , Malassezia/efectos de los fármacos , Malassezia/crecimiento & desarrollo , Compuestos Organometálicos/farmacología , Piridinas/farmacología , Cuero Cabelludo/efectos de los fármacos , Piel/efectos de los fármacos , Simbiosis/efectos de los fármacos , Adulto , Anciano , Estudios de Cohortes , Humanos , Estudios Longitudinales , Malassezia/clasificación , Malassezia/genética , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Proyectos Piloto , Cuero Cabelludo/microbiología , Piel/microbiología , Jabones/química , Jabones/farmacología , Encuestas y Cuestionarios , Adulto Joven
2.
Front Microbiol ; 10: 1891, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551938

RESUMEN

Commensal fungi such as Malassezia, Candida, and Rhodotorula are common on healthy skin but are also associated with opportunistic invasive and superficial infections. Skin microbial community characterization has been extensively performed worldwide, with a focus on the 16S bacterial community. These studies have focused on geographically distinct or targeted cohorts with variable reported species distributions of commensal yeast species. To determine the effects of extrinsic environmental factors such as geography, climate, and ethnicity on detected healthy skin commensal yeast diversity, we compared cohorts from Singapore and Zürich, Switzerland, representative of two geographically and climatically distinct regions comprising multi-ethnic (Chinese, Malay, Indian, Caucasian) and predominantly white Caucasian cohorts, respectively, using identical skin sampling and culture methods. We chose to use a culture-based approach as cultures isolated from patients are still required for studies of pathogenicity and antifungal susceptibility. Detection of yeast species by culture-dependent and independent sequencing-based methods suggest healthy skin diversity reflects a species distribution representative of the geography, climate and ethnic background of their local populations. Culture success and species diversity was also found to be dependent on climate, with warm tropical climates favoring high positive culture rates and greater species diversity. Multilocus sequence typing data suggests some strains are geographically distinct and may be used to segregate potential disease-causing commensals. For accurate collection and characterization of skin microbial communities, it remains recommended to employ a combination of culture-dependent and sequence-based culture-independent methods. Characterization of healthy mycobiomes in geographically distinct local populations will be useful in defining the role of commensal fungi in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA