Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793266

RESUMEN

MXenes are a family of two-dimensional nanomaterials. Titanium carbide MXene (Ti3C2Tx-MXene), reported in 2011, is the first inorganic compound reported among the MXene family. In the present work, we report on the study of the composition and various physical properties of Ti3C2Tx-MXene nanomaterial, as well as their temperature evolution, to consider MXenes for space applications. X-ray diffraction, thermal analysis and mass spectroscopy measurements confirmed the structure and terminating groups of the MXene surface, revealing a predominant single OH layer character. The temperature dependence of the specific heat shows a Debye-like character in the measured range of 2 K-300 K with a linear part below 10 K, characteristic of conduction electrons of metallic materials. The electron density of states (DOS) calculations for Ti3C2OH-MXene reveal a significant DOS value at the Fermi level, with a large slope, confirming its metallic character, which is consistent with the experimental findings. The temperature dependence of electrical resistivity of the MXene samples was tested for a wide temperature range (3 K-350 K) and shows a decrease on lowering temperature with an upturn at low temperatures, where negative magnetoresistance is observed. The magnetoresistance versus field is approximately linear and increases its magnitude with decreasing temperature. The magnetization curves are straight lines with temperature-independent positive slopes, indicating Pauli paramagnetism due to conduction electrons.

2.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458018

RESUMEN

Coating of nanoparticles with gallates renders them antioxidant and enhances cellular internalization. In this study, (amino)silica magnetic particles modified with tannic acid (TA) and optionally with chitosan (CS) were developed, and their physicochemical properties and antioxidant activity were evaluated. The results demonstrated that the TA-modified aminosilica-coated particles, as well as the silica-coated particles with a double TA layer, exhibited high antioxidant activity, whereas the silica-coated particles with no or only a single TA layer were well-internalized by LN-229 cells. In addition, a magnet placed under the culture plates greatly increased the cellular uptake of all TA-coated magnetic nanoparticles. The coating thus had a considerable impact on nanoparticle-cell interactions and particle internalization. The TA-coated magnetic nanoparticles have great potential as intracellular carriers with preserved antioxidant activity.

3.
Materials (Basel) ; 14(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207937

RESUMEN

A study of Ti3Al1-xSixC2 (x = 0 to x = 1) MAX-phase alloys is reported. The materials were obtained from mixtures of Ti3AlC2 and Ti3SiC2 powders with hot pressing sintering technique. They were characterised with X-ray diffraction, heat capacity, electrical resistivity, and magnetoresistance measurements. The results show a good quality crystal structure and metallic properties with high residual resistivity. The resistivity weakly varies with Si doping and shows a small, positive magnetoresistance effect. The magnetoresistance exhibits a quadratic dependence on the magnetic field, which indicates a dominant contribution from open electronic orbits. The Debye temperatures and Sommerfeld coefficient values derived from specific heat data show slight variations with Si content, with decreasing tendency for the former and an increase for the latter. Experimental results were supported by band structure calculations whose results are consistent with the experiment concerning specific heat, resistivity, and magnetoresistance measurements. In particular, they reveal that of the s-electrons at the Fermi level, those of Al and Si have prevailing density of states and, thus predominantly contribute to the metallic conductivity. This also shows that the high residual resistivity of the materials studied is an intrinsic effect, not due to defects of the crystal structure.

4.
Mater Sci Eng C Mater Biol Appl ; 104: 109913, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499964

RESUMEN

This study describes the preparation, and evaluates the biocompatibility, of hydroxylated multi-walled carbon nanotubes (fCNTs) functionalized with magnetic iron oxide nanoparticles (IONs) creating hybrid nanoparticles. These nanoparticles were used for preparing a composite porous poly(ε-caprolactone) scaffolds for potential utilization in regenerative medicine. Hybrid fCNT/ION nanoparticles were prepared in two mass ratios - 1:1 (H1) and 1:4 (H4). PCL scaffolds were prepared with various concentrations of the nanoparticles with fixed mass either of the whole nanoparticle hybrid or only of the fCNTs. The hybrid particles were evaluated in terms of morphology, composition and magnetic properties. The cytotoxicity of the hybrid nanoparticles and the pure fCNTs was assessed by exposing the SAOS-2 human cell line to colloids with a concentration range from 0.01 to 1 mg/ml. The results indicate a gradual increase in the cytotoxicity effect with increasing concentration. At low concentrations, interestingly, SAOS-2 metabolic activity was stimulated by the presence of IONs. The PCL scaffolds were characterized in terms of the scaffold architecture, the dispersion of the nanoparticles within the polymer matrix, and subsequently in terms of their thermal, mechanical and magnetic properties. A higher ION content was associated with the presence of larger agglomerates of particles. With exception of the scaffold with the highest content of the H4 nanoparticle hybrid, all composites were superparamagnetic. In vitro tests indicate that both components of the hybrid nanoparticles may have a positive impact on the behavior of SAOS-2 cells cultivated on the PCL composite scaffolds. The presence of fCNTs up to 1 wt% improved the cell attachment to the scaffolds, and a content of IONs below 1 wt% increased the cell metabolic activity.


Asunto(s)
Regeneración Ósea/fisiología , Compuestos Férricos/química , Nanotubos de Carbono/química , Poliésteres/química , Línea Celular Tumoral , Humanos , Fenómenos Magnéticos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Estrés Mecánico , Andamios del Tejido/química
5.
J Nanopart Res ; 15(1): 1372, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23420339

RESUMEN

This article presents the synthesis and characterization of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) coated with ultrathin layer of anionic derivative of chitosan. The water-based fabrication involved a two-step procedure. In the first step, the nanoparticles were obtained by co-precipitation of ferrous and ferric aqueous salt solutions with ammonia in the presence of cationic derivative of chitosan. In the second step, such prepared materials were subjected to adsorption of oppositely charged chitosan derivative which resulted in the preparation of negatively charged SPIONs. They were found to develop highly stable dispersion in water. The core size of the nanocoated SPIONs, determined using transmission electron microscopy, was measured to be slightly above 10 nm. The coated nanoparticles form aggregates with majority of them having hydrodynamic diameter below 100 nm, as measured by dynamic light scattering. Their composition and properties were studied using FTIR and thermogravimetric analyses. They exhibit magnetic properties typical for superparamagnetic material with a high saturation magnetization value of 123 ± 12 emu g(-1) Fe. Very high value of the measured r(2) relaxivity, 369 ± 3 mM(-1) s(-1), is conducive for the potential application of the obtained SPIONs as promising contrast agents in magnetic resonance imaging. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-012-1372-9) contains supplementary material, which is available to authorized users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA