Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(6)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35746729

RESUMEN

Orthohantaviruses are zoonotic pathogens that play a significant role in public health. These viruses can cause haemorrhagic fever with renal syndrome in Eurasia. In the Republic of Kazakhstan, the first human cases were registered in the year 2000 in the West Kazakhstan region. Small mammals can be reservoirs of orthohantaviruses. Previous studies showed orthohantavirus antigens in wild-living small mammals in four districts of West Kazakhstan. Clinical studies suggested that there might be further regions with human orthohantavirus infections in Kazakhstan, but genetic data of orthohantaviruses in natural foci are limited. The aim of this study was to investigate small mammals for the presence of orthohantaviruses by molecular biological methods and to provide a phylogenetic characterization of the circulating strains in Kazakhstan. Small mammals were trapped at 19 sites in West Kazakhstan, four in Almaty region and at seven sites around Almaty city during all seasons of 2018 and 2019. Lung tissues of small mammals were homogenized and RNA was extracted. Orthohantavirus RT-PCR assays were applied for detection of partial S and L segment sequences. Results were compared to published fragments. In total, 621 small mammals from 11 species were analysed. Among the collected small mammals, 2.4% tested positive for orthohantavirus RNA, one sample from West Kazakhstan and 14 samples from Almaty region. None of the rodents caught in Almaty city were infected. Sequencing parts of the small (S) and large (L) segments specified Tula virus (TULV) in these two regions. Our data show that geographical distribution of TULV is more extended as previously thought. The detected sequences were found to be split in two distinct genetic clusters of TULV in West Kazakhstan and Almaty region. TULV was detected in the common vole (Microtus arvalis) and for the first time in two individuals of the forest dormouse (Dryomys nitedula), interpreted as a spill-over infection in Kazakhstan.


Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Virus ARN , Animales , Arvicolinae , Orthohantavirus/genética , Kazajstán/epidemiología , Filogenia , ARN , Virus ARN/genética
2.
Adv Exp Med Biol ; 1152: 65-73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456180

RESUMEN

The term "autophagy", which means "self (auto) - eating (phagy)", describes a catabolic process that is evolutionarially conserved among all eukaryotes. Although autophagy is mainly accepted as a cell survival mechanism, it also modulates the process known as "type II cell death". AKT/mTOR pathway is an upstream activator of autophagy and it is tightly regulated by the ATG (autophagy-related genes) signaling cascade. In addition, wide ranging cell signaling pathways and non-coding RNAs played essential roles in the control of autophagy. Autophagy is closely related to pathological processes such as neurodegenerative diseases and cancer as well as physiological conditions. After the Nobel Prize in Physiology or Medicine 2016 was awarded to Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy", there was an explosion in the field of autophagy and molecular biologists started to pay considerable attention to the mechanistic insights related to autophagy in different diseases. Since autophagy behaved dualistically, both as a cell death and a cell survival mechanism, it opened new horizons for a deeper analysis of cell type and context dependent behavior of autophagy in different types of cancers. There are numerous studies showing that the induction of autophagy mechanism will promote survival of cancer cells. Since autophagy is mainly a mechanism to keep the cells alive, it may protect breast cancer cells against stress conditions such as starvation and hypoxia. For these reasons, autophagy was noted to be instrumental in metastasis and drug resistance. In this chapter we have emphasized on role of role of autophagy in breast cancer. Additionally we have partitioned this chapter into exciting role of microRNAs in modulation of autophagy in breast cancer. We have also comprehensively summarized how TRAIL-mediated signaling and autophagy operated in breast cancer cells.


Asunto(s)
Autofagia , Neoplasias de la Mama/patología , MicroARNs/genética , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Progresión de la Enfermedad , Humanos
3.
Cell Mol Biol (Noisy-le-grand) ; 64(11): 102-107, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30213297

RESUMEN

Piperlongumine is a biologically and pharmacologically active constituent of the plant Piper longum. This compound is gradually gaining attention because of its ability to inhibit/prevent different cancers. Modern era of molecular oncology is incomplete without ground-breaking discoveries made in the field of cell signaling pathways. High-throughput technologies have considerably improved our understanding about wide ranging signal transduction cascades which play crucial role in cancer development and progression. It is exciting to note that piperlongumine has been shown to pleiotropically modulate different oncogenic signaling pathways. We partition this multi-component review into discrete sections and categorically summarize key findings related to excellent ability of piperlongumine to therapeutically target JAK-STAT, NF-kB and PI3K/AKT/mTOR pathways. We also set spotlight on regulation of TRAIL pathway and autophagy by piperlongumine in different cancers. On the basis of the current understanding of piperlongumine, molecular biologists and pharmacologists will develop the next generation of translational studies, which will prove to be helpful in improving the clinical outcome and getting a step closer to personalized medicine.


Asunto(s)
Antineoplásicos/farmacología , Dioxolanos/farmacología , Animales , Apoptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...