Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219072

RESUMEN

Expressions of voltage-gated sodium channels Nav1.1 and Nav1.2, encoded by SCN1A and SCN2A genes, respectively, have been reported to be mutually exclusive in most brain regions. In juvenile and adult neocortex, Nav1.1 is predominantly expressed in inhibitory neurons while Nav1.2 is in excitatory neurons. Although a distinct subpopulation of layer V (L5) neocortical excitatory neurons were also reported to express Nav1.1, their nature has been uncharacterized. In hippocampus, Nav1.1 has been proposed to be expressed only in inhibitory neurons. By using newly generated transgenic mouse lines expressing Scn1a promoter-driven green fluorescent protein (GFP), here we confirm the mutually exclusive expressions of Nav1.1 and Nav1.2 and the absence of Nav1.1 in hippocampal excitatory neurons. We also show that Nav1.1 is expressed in inhibitory and a subpopulation of excitatory neurons not only in L5 but all layers of neocortex. By using neocortical excitatory projection neuron markers including FEZF2 for L5 pyramidal tract (PT) and TBR1 for layer VI (L6) cortico-thalamic (CT) projection neurons, we further show that most L5 PT neurons and a minor subpopulation of layer II/III (L2/3) cortico-cortical (CC) neurons express Nav1.1 while the majority of L6 CT, L5/6 cortico-striatal (CS), and L2/3 CC neurons express Nav1.2. These observations now contribute to the elucidation of pathological neural circuits for diseases such as epilepsies and neurodevelopmental disorders caused by SCN1A and SCN2A mutations.


Asunto(s)
Neocórtex , Ratones , Animales , Ratones Transgénicos , Neocórtex/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Tractos Piramidales , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuronas/fisiología , Células Piramidales/metabolismo
3.
Nat Commun ; 11(1): 970, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080200

RESUMEN

Deregulation of mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is one of the most common inherited metabolic disorders, due to deficiency of the mitochondrial methylmalonyl-coenzyme A mutase (MMUT). How MMUT deficiency triggers cell damage remains unknown, preventing the development of disease-modifying therapies. Here we combine genetic and pharmacological approaches to demonstrate that MMUT deficiency induces metabolic and mitochondrial alterations that are exacerbated by anomalies in PINK1/Parkin-mediated mitophagy, causing the accumulation of dysfunctional mitochondria that trigger epithelial stress and ultimately cell damage. Using drug-disease network perturbation modelling, we predict targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived cells and alleviate phenotype changes in mmut-deficient zebrafish. These results suggest a link between primary MMUT deficiency, diseased mitochondria, mitophagy dysfunction and epithelial stress, and provide potential therapeutic perspectives for MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Metilmalonil-CoA Mutasa/deficiencia , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mitofagia/fisiología , Transferasas Alquil y Aril/deficiencia , Transferasas Alquil y Aril/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Errores Innatos del Metabolismo/genética , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/genética , Mitofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
4.
Sci Rep ; 9(1): 12287, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444371

RESUMEN

Uromodulin is a zona pellucida-type protein essentially produced in the thick ascending limb (TAL) of the mammalian kidney. It is the most abundant protein in normal urine. Defective uromodulin processing is associated with various kidney disorders. The luminal release and subsequent polymerization of uromodulin depend on its cleavage mediated by the serine protease hepsin. The biological relevance of a proper cleavage of uromodulin remains unknown. Here we combined in vivo testing on hepsin-deficient mice, ex vivo analyses on isolated tubules and in vitro studies on TAL cells to demonstrate that hepsin influence on uromodulin processing is an important modulator of salt transport via the sodium cotransporter NKCC2 in the TAL. At baseline, hepsin-deficient mice accumulate uromodulin, along with hyperactivated NKCC2, resulting in a positive sodium balance and a better adaptation to water deprivation. In conditions of high salt intake, defective uromodulin processing predisposes hepsin-deficient mice to a salt-wasting phenotype, with a decreased salt sensitivity. These modifications are associated with intracellular accumulation of uromodulin, endoplasmic reticulum-stress and signs of tubular damage. These studies expand the physiological role of hepsin and uromodulin and highlight the importance of hepsin-mediated processing of uromodulin for kidney tubule homeostasis and salt sensitivity.


Asunto(s)
Homeostasis , Túbulos Renales/metabolismo , Serina Endopeptidasas/metabolismo , Cloruro de Sodio/farmacología , Uromodulina/metabolismo , Animales , Secuencia de Bases , Línea Celular , Homeostasis/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Ratones Endogámicos C57BL , Mutación/genética , Fenotipo , Serina Endopeptidasas/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Uromodulina/orina
5.
J Am Soc Nephrol ; 29(11): 2696-2712, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30301861

RESUMEN

BACKGROUND: The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS: To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS: Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS: Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.


Asunto(s)
Endocitosis/fisiología , Túbulos Renales Proximales/anatomía & histología , Túbulos Renales Proximales/fisiología , Animales , Endosomas/metabolismo , Microscopía Intravital , Túbulos Renales Proximales/diagnóstico por imagen , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Muramidasa/metabolismo , Transporte de Proteínas
6.
Kidney Int ; 94(5): 882-886, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30348305

RESUMEN

Uromodulin is produced in the thick ascending limb, but little is known about regulation of its excretion in urine. Using mouse and cellular models, we demonstrate that excretion of uromodulin by thick ascending limb cells is increased or decreased upon inactivation or activation of the calcium-sensing receptor (CaSR), respectively. These effects reflect changes in uromodulin trafficking and likely involve alterations in intracellular cyclic adenosine monophosphate (cAMP) levels. Administration of the CaSR agonist cinacalcet led to a rapid reduction of urinary uromodulin excretion in healthy subjects. Modulation of uromodulin excretion by the CaSR may be clinically relevant considering the increasing use of CaSR modulators.


Asunto(s)
Receptores Sensibles al Calcio/fisiología , Uromodulina/orina , Animales , Calcio/metabolismo , AMP Cíclico/análisis , Asa de la Nefrona/metabolismo , Ratones , Receptores Sensibles al Calcio/genética
7.
Kidney Int ; 94(4): 701-715, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007527

RESUMEN

Uromodulin, the most abundant protein in normal urine, is essentially produced by the cells lining the thick ascending limb. There it regulates the activity of the cotransporter NKCC2 and is involved in sodium chloride handling and blood pressure regulation. Conflicting reports suggested that uromodulin may also be expressed in the distal convoluted tubule (DCT) where its role remains unknown. Using microdissection studies combined with fluorescent in situ hybridization and co-immunostaining analyses, we found a significant expression of uromodulin in mouse and human DCT at approximately 10% of thick ascending limb expression levels, but restricted to the early part of the DCT (DCT1). Genetic deletion of Umod in mouse was reflected by a major shift in NCC activity from the DCT1 to the downstream DCT2 segment, paralleled by a compensatory expansion of DCT2. By increasing the distal sodium chloride and calcium ion load with chronic furosemide administration, an intrinsic compensatory defect in the DCT from Umod-/- compared to wild type mice was found manifested as sodium wasting and hypercalciuria. In line, co-expression studies in HEK cells suggested a facilitating role for uromodulin in NCC phosphorylation, possibly via SPAK-OSR1 modulation. These experiments demonstrate a significant expression of uromodulin in the early part of mouse and human DCT. Thus, biosynthesis of uromodulin in the DCT1 is critical for its function, structure and plasticity, suggesting novel links between uromodulin, blood pressure control and risk of kidney stones.


Asunto(s)
Túbulos Renales Distales/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Uromodulina/biosíntesis , Uromodulina/genética , Uromodulina/metabolismo , Animales , Furosemida/farmacología , Expresión Génica , Células HEK293 , Humanos , Hipercalciuria/inducido químicamente , Hipercalciuria/genética , Túbulos Renales Distales/fisiología , Masculino , Ratones , Ratones Noqueados , Fosforilación , ARN Mensajero , Sodio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 1 de la Familia de Transportadores de Soluto 12/antagonistas & inhibidores , Miembro 1 de la Familia de Transportadores de Soluto 12/genética
8.
Nat Commun ; 9(1): 161, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323117

RESUMEN

The endolysosomal system sustains the reabsorptive activity of specialized epithelial cells. Lysosomal storage diseases such as nephropathic cystinosis cause a major dysfunction of epithelial cells lining the kidney tubule, resulting in massive losses of vital solutes in the urine. The mechanisms linking lysosomal defects and epithelial dysfunction remain unknown, preventing the development of disease-modifying therapies. Here we demonstrate, by combining genetic and pharmacologic approaches, that lysosomal dysfunction in cystinosis results in defective autophagy-mediated clearance of damaged mitochondria. This promotes the generation of oxidative stress that stimulates Gα12/Src-mediated phosphorylation of tight junction ZO-1 and triggers a signaling cascade involving ZO-1-associated Y-box factor ZONAB, which leads to cell proliferation and transport defects. Correction of the primary lysosomal defect, neutralization of mitochondrial oxidative stress, and blockage of tight junction-associated ZONAB signaling rescue the epithelial function. We suggest a link between defective lysosome-autophagy degradation pathways and epithelial dysfunction, providing new therapeutic perspectives for lysosomal storage disorders.


Asunto(s)
Autofagia , Cistinosis/patología , Riñón/patología , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Túbulos Renales Proximales/patología , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Estrés Oxidativo , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Uniones Estrechas/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra , Proteína de la Zonula Occludens-1/metabolismo
9.
J Physiol ; 595(8): 2535-2550, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28120456

RESUMEN

KEY POINTS: Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT: Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein ß and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.


Asunto(s)
Endotelina-1/fisiología , Hipercalcemia/metabolismo , Natriuresis/fisiología , Poliuria/metabolismo , Vitamina D/toxicidad , Enfermedad Aguda , Animales , Línea Celular Transformada , Hipercalcemia/inducido químicamente , Hipercalcemia/orina , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Natriuresis/efectos de los fármacos , Poliuria/orina
10.
Pflugers Arch ; 469(1): 91-103, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27915449

RESUMEN

The nature and importance of genetic factors regulating the differential handling of Ca2+ and Mg2+ by the renal tubule in the general population are poorly defined. We conducted a genome-wide meta-analysis of urinary magnesium-to-calcium ratio to identify associated common genetic variants. We included 9320 adults of European descent from four genetic isolates and three urban cohorts. Urinary magnesium and calcium concentrations were measured centrally in spot urine, and each study conducted linear regression analysis of urinary magnesium-to-calcium ratio on ~2.5 million single-nucleotide polymorphisms (SNPs) using an additive model. We investigated, in mouse, the renal expression profile of the top candidate gene and its variation upon changes in dietary magnesium. The genome-wide analysis evidenced a top locus (rs172639, p = 1.7 × 10-12), encompassing CLDN14, the gene coding for claudin-14, that was genome-wide significant when using urinary magnesium-to-calcium ratio, but not either one taken separately. In mouse, claudin-14 is expressed in the distal nephron segments specifically handling magnesium, and its expression is regulated by chronic changes in dietary magnesium content. A genome-wide approach identified common variants in the CLDN14 gene exerting a robust influence on the differential excretion of Mg2+ over Ca2+ in urine. These data highlight the power of urinary electrolyte ratios to unravel genetic determinants of renal tubular function. Coupled with mouse experiments, these results support a major role for claudin-14, a gene associated with kidney stones, in the differential paracellular handling of divalent cations by the renal tubule.


Asunto(s)
Calcio/orina , Claudinas/genética , Magnesio/orina , Polimorfismo de Nucleótido Simple/genética , Orina/química , Animales , Calcio/metabolismo , Humanos , Túbulos Renales/metabolismo , Magnesio/metabolismo
11.
J Am Soc Nephrol ; 27(10): 2997-3004, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27056296

RESUMEN

The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Diuréticos/metabolismo , Furosemida/metabolismo , Riñón/metabolismo , Metaboloma/genética , Animales , Diuréticos/sangre , Furosemida/sangre , Ratones , Nefronas
12.
J Am Soc Nephrol ; 25(7): 1430-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24652800

RESUMEN

The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.


Asunto(s)
Presión Sanguínea/fisiología , Relojes Circadianos/fisiología , Homeostasis/fisiología , Equilibrio Hidroelectrolítico/fisiología , Factores de Transcripción ARNTL/fisiología , Animales , Masculino , Ratones , Renina/fisiología
13.
J Clin Invest ; 123(7): 3166-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23934124

RESUMEN

Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl(-)-dependent HCO(3)(-) secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1(-/-) mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1(-/-) mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO(3)(-) secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.


Asunto(s)
Equilibrio Ácido-Base , Ácidos Cetoglutáricos/orina , Túbulos Renales Colectores/fisiología , Comunicación Paracrina , Animales , Bicarbonatos/metabolismo , Técnicas In Vitro , Ácidos Cetoglutáricos/sangre , Masculino , Ratones , Ratones Noqueados , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Cloruro de Sodio/metabolismo
14.
J Am Soc Nephrol ; 23(6): 1019-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440902

RESUMEN

The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Sodio/metabolismo , Aldosterona/análisis , Aldosterona/sangre , Animales , Proteínas CLOCK/genética , Modelos Animales de Enfermedad , Homeostasis/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Capacidad de Concentración Renal , Túbulos Renales Colectores/metabolismo , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Sistema Renina-Angiotensina/fisiología , Sensibilidad y Especificidad , Sodio/orina , Transcriptoma/genética
15.
Mol Cell Endocrinol ; 349(1): 51-5, 2012 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-21763748

RESUMEN

Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).


Asunto(s)
Relojes Circadianos , Homeostasis , Riñón/fisiología , Equilibrio Hidroelectrolítico , Animales , Cloruros/metabolismo , Ritmo Circadiano , Hormonas/metabolismo , Humanos , Riñón/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Agua/metabolismo
16.
Neurobiol Dis ; 24(2): 245-53, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16934482

RESUMEN

Temporal lobe epilepsy (TLE) has a multifactorial etiology involving developmental, environmental, and genetic components. Here, we report a voltage-gated potassium channel gene mutation found in a TLE patient, namely a Kv4.2 truncation mutation. Kv4.2 channels, encoded by the KCND2 gene, mediate A currents in the brain. The identified mutation corresponds to an N587fsX1 amino acid change, predicted to produce a truncated Kv4.2 protein lacking the last 44 amino acids in the carboxyl terminal. Electrophysiological analysis indicates attenuated K+ current density in cells expressing this Kv4.2-N587fsX1 mutant channel, which is consistent with a model of aberrant neuronal excitability characteristic of TLE. Our observations, together with other lines of evidence, raise the intriguing possibility of a role for KCND2 in the etiology of TLE.


Asunto(s)
Química Encefálica/genética , Encéfalo/metabolismo , Epilepsia del Lóbulo Temporal/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Canales de Potasio Shal/genética , Potenciales de Acción/genética , Adulto , Sustitución de Aminoácidos/genética , Encéfalo/fisiopatología , Línea Celular , Análisis Mutacional de ADN , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Pruebas Genéticas , Genotipo , Humanos , Masculino , Potenciales de la Membrana/genética , Técnicas de Placa-Clamp , Linaje , Potasio/metabolismo , Estructura Terciaria de Proteína/genética , Canales de Potasio Shal/química , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...