Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Phys Rev Lett ; 131(22): 226503, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101342

RESUMEN

Our measurements of ^{125}Te NMR relaxations reveal an enhancement of electronic spin fluctuations above µ_{0}H^{*}∼15 T, leading to their divergence in the vicinity of the metamagnetic transition at µ_{0}H_{m}≈35 T, below which field-reinforced superconductivity appears when a magnetic field (H) is applied along the crystallographic b axis. The NMR data evidence that these fluctuations are dominantly longitudinal, providing a key to understanding the peculiar superconducting phase diagram in H∥b, where such fluctuations enhance the pairing interactions.

2.
Phys Rev Lett ; 130(19): 196002, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243663

RESUMEN

The superconducting (SC) phase diagram in uranium ditelluride is explored under magnetic fields (H) along the hard magnetic b axis using a high-quality single crystal with T_{c}=2.1 K. Simultaneous electrical resistivity and ac magnetic susceptibility measurements discern low- and high-field SC (LFSC and HFSC, respectively) phases with contrasting field-angular dependence. Crystal quality increases the upper critical field of the LFSC phase, but the H^{*} of ∼15 T, at which the HFSC phase appears, is always the same through the various crystals. A phase boundary signature is also observed inside the LFSC phase near H^{*}, indicating an intermediate SC phase characterized by small flux pinning forces.

3.
J Phys Condens Matter ; 34(24)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35203074

RESUMEN

The novel spin-triplet superconductor candidate UTe2was discovered only recently at the end of 2018 and already attracted enormous attention. We review key experimental and theoretical progress which has been achieved in different laboratories. UTe2is a heavy-fermion paramagnet, but following the discovery of superconductivity, it has been expected to be close to a ferromagnetic instability, showing many similarities to the U-based ferromagnetic superconductors, URhGe and UCoGe. This view might be too simplistic. The competition between different types of magnetic interactions and the duality between the local and itinerant character of the 5fUranium electrons, as well as the shift of the U valence appear as key parameters in the rich phase diagrams discovered recently under extreme conditions like low temperature, high magnetic field, and pressure. We discuss macroscopic and microscopic experiments at low temperature to clarify the normal phase properties at ambient pressure for field applied along the three axis of this orthorhombic structure. Special attention will be given to the occurrence of a metamagnetic transition atHm= 35 T for a magnetic field applied along the hard magnetic axisb. Adding external pressure leads to strong changes in the magnetic and electronic properties with a direct feedback on superconductivity. Attention is paid on the possible evolution of the Fermi surface as a function of magnetic field and pressure. Superconductivity in UTe2is extremely rich, exhibiting various unconventional behaviors which will be highlighted. It shows an exceptionally huge superconducting upper critical field with a re-entrant behavior under magnetic field and the occurrence of multiple superconducting phases in the temperature-field-pressure phase diagrams. There is evidence for spin-triplet pairing. Experimental indications exist for chiral superconductivity and spontaneous time reversal symmetry breaking in the superconducting state. Different theoretical approaches will be described. Notably we discuss that UTe2is a possible example for the realization of a fascinating topological superconductor. Exploring superconductivity in UTe2reemphasizes that U-based heavy fermion compounds give unique examples to study and understand the strong interplay between the normal and superconducting properties in strongly correlated electron systems.

4.
J Phys Condens Matter ; 34(17)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35120343

RESUMEN

Single crystals of the unconventional superconductor UTe2have been grown in various conditions which result in different superconducting transition temperature as well as normal state properties. Stoichiometry of the samples has been characterized by the single-crystal x-ray crystallography and electron microprobe analyses. Superconducting samples are nearly stoichiometric within an experimental error of about 1%, while non-superconducting sample significantly deviates from the ideal composition. The superconducting UTe2showed that the large density of states was partially gapped in the normal state, while the non-superconducting sample is characterized by the relatively large electronic specific heat as reported previously.

5.
Phys Rev Lett ; 127(15): 157201, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678006

RESUMEN

Nonreciprocal directional dichroism, also called the optical-diode effect, is an appealing functional property inherent to the large class of noncentrosymmetric magnets. However, the in situ electric control of this phenomenon is challenging as it requires a set of conditions to be fulfilled: Special symmetries of the magnetic ground state, spin excitations with comparable magnetic- and electric-dipole activity, and switchable electric polarization. We demonstrate the isothermal electric switch between domains of Ba_{2}CoGe_{2}O_{7} possessing opposite magnetoelectric susceptibilities. Combining THz spectroscopy and multiboson spin-wave analysis, we show that unbalancing the population of antiferromagnetic domains generates the nonreciprocal light absorption of spin excitations.

6.
Nat Commun ; 12(1): 2755, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980845

RESUMEN

Systems with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain walls. A change of the ordered state across a domain wall can lead to local non-bulk physical properties such as enhanced conductance or the promotion of unusual phases. Although highly desirable, controlled transfer of these properties between the bulk and the spatially confined walls is usually not possible. Here, we demonstrate this crossover by confining multiferroic Dy0.7Tb0.3FeO3 domains into multiferroic domain walls at an identified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from expanding the concept of multiferroic order, such interconversion can be key to addressing antiferromagnetic domain structures and topological singularities.

7.
Transplant Proc ; 51(3): 896-900, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30979482

RESUMEN

Allogeneic hematopoietic cell transplant (HCT) is a curative procedure for myeloid malignant neoplasms, but relapse after HCT remains critical. A conditioning regimen involving granulocyte colony-stimulating factor-combined high-dose cytarabine, cyclophosphamide, and total body irradiation (G-CSF-combined high-dose cytarabine/cyclophosphamide/total-body irradiation [HDCA/CY/TBI]) was reported to improve outcomes after cord blood transplant (CBT) for myeloid malignant neoplasms, but this regimen was not previously evaluated among patients undergoing bone marrow transplant (BMT) or peripheral blood stem cell transplant (PBSCT). METHODS: We retrospectively analyzed 28 patients who underwent allogeneic HCT including BMT from a related (1 patient) or unrelated donor (9 patients), PBSCT from a related donor (7 patients), or single-unit CBT from an unrelated donor (11 patients) after a G-CSF-combined HDCA/CY/TBI regimen. RESULTS: All patients achieved neutrophil and platelet engraftment, which were significantly more rapid in the BMT/PBSCT group than in the CBT group. Eighteen patients were alive at a median follow-up of 54.3 months. The 3-year relapse and nonrelapse mortality rates were 28.6% and 7.1%, respectively, which were similar between the BMT/PBSCT and CBT groups. Overall survival and disease-free survival at 5 years after HCT were 62.6% and 64.3%, respectively, which were also similar between the BMT/PBSCT and CBT groups. Only disease status at HCT had a significant impact on overall survival and disease-free survival (86.7% with standard risk vs 38.5% with high risk and 86.7% with standard risk vs 38.5% with high risk, respectively). CONCLUSION: A G-CSF-combined HDCA/CY/TBI regimen is a promising conditioning in patients with myeloid malignant neoplasms who undergo not only CBT but also BMT or PBSCT.


Asunto(s)
Ciclofosfamida/administración & dosificación , Citarabina/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide/terapia , Acondicionamiento Pretrasplante/métodos , Irradiación Corporal Total/métodos , Adolescente , Adulto , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Humanos , Inmunosupresores/administración & dosificación , Masculino , Persona de Mediana Edad , Recurrencia , Estudios Retrospectivos , Donante no Emparentado , Adulto Joven
8.
Nat Commun ; 10(1): 1247, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886147

RESUMEN

Mutual control of the electricity and magnetism in terms of magnetic (H) and electric (E) fields, the magnetoelectric (ME) effect, offers versatile low power consumption alternatives to current data storage, logic gate, and spintronic devices. Despite its importance, E-field control over magnetization (M) with significant magnitude was observed only at low temperatures. Here we have successfully stabilized a simultaneously ferrimagnetic and ferroelectric phase in a Y-type hexaferrite single crystal up to 450 K, and demonstrated the reversal of large non-volatile M by E field close to room temperature. Manipulation of the magnetic domains by E field is directly visualized at room temperature by using magnetic force microscopy. The present achievement provides an important step towards the application of ME multiferroics.

9.
Br J Anaesth ; 122(1): 155, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30579399

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief of British Journal of Anaesthesia. The study is retracted for the following reasons: Statistical analysis suggests that the data may be fabricated. Y Saitoh provided a statement in a personal communication to a member of the editorial board of British Journal of Anaesthesia that the study was not approved by the Institutional Review Board and that no evidence exists to support the study findings.

10.
Nature ; 564(7734): 95-98, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518889

RESUMEN

Crystal lattices with tetragonal or hexagonal structure often exhibit structural transitions in response to external stimuli1. Similar behaviour is anticipated for the lattice forms of topological spin textures, such as lattices composed of merons and antimerons or skyrmions and antiskyrmions (types of vortex related to the distribution of electron spins in a magnetic field), but has yet to be verified experimentally2,3. Here we report real-space observations of spin textures in a thin plate of the chiral-lattice magnet Co8Zn9Mn3, which exhibits in-plane magnetic anisotropy. The observations demonstrate the emergence of a two-dimensional square lattice of merons and antimerons from a helical state, and its transformation into a hexagonal lattice of skyrmions in the presence of a magnetic field at room temperature. Sequential observations with decreasing temperature reveal that the topologically protected skyrmions remain robust to changes in temperature, whereas the square lattice of merons and antimerons relaxes to non-topological in-plane spin helices, highlighting the different topological stabilities of merons, antimerons and skyrmions. Our results demonstrate the rich variety of topological spin textures and their lattice forms, and should stimulate further investigation of emergent electromagnetic properties.

11.
Phys Rev Lett ; 120(2): 027001, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376726

RESUMEN

In order to identify the spin contribution to superconducting pairing compatible with the so-called "hidden order", ^{29}Si nuclear magnetic resonance measurements have been performed using a high-quality single crystal of URu_{2}Si_{2}. A clear reduction of the ^{29}Si Knight shift in the superconducting state has been observed under a magnetic field applied along the crystalline c axis, corresponding to the magnetic easy axis. These results provide direct evidence for the formation of spin-singlet Cooper pairs. Consequently, results indicating a very tiny change of the in-plane Knight shift reported previously demonstrate extreme uniaxial anisotropy for the spin susceptibility in the hidden order state.

12.
Nat Mater ; 15(12): 1237-1242, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27643728

RESUMEN

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, ß-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

13.
Nat Commun ; 6: 7638, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26134284

RESUMEN

Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: ß-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms.

14.
Phys Rev Lett ; 114(21): 216401, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066447

RESUMEN

Our measurements of the ^{59}Co NMR spin-spin relaxation in URh_{0.9}Co_{0.1}Ge reveal a divergence of electronic spin fluctuations in the vicinity of the field-induced quantum critical point at H_{R}≈13 T, around which reentrant superconductivity (RSC) occurs in the ferromagnetic heavy fermion compound URhGe. We map out the strength of spin fluctuations in the (H_{b},H_{c}) plane of magnetic field components and show that critical fluctuations develop in the same limited region near the field H_{R} as that where RSC is observed. This strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC. The fluctuations observed are characteristic of a tricritical point, followed by a phase bifurcation toward quantum critical end points.

15.
Phys Rev Lett ; 112(23): 236401, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24972218

RESUMEN

Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the "hidden order" (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.

16.
Phys Rev Lett ; 112(3): 037203, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24484164

RESUMEN

In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign.

17.
Nat Commun ; 5: 3203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24487724

RESUMEN

The coupling between spins and electric dipoles governs magnetoelectric phenomena in multiferroics. The dynamical magnetoelectric effect, which is an inherent attribute of the spin excitations in multiferroics, drastically changes the optical properties of these compounds compared with conventional materials where light-matter interaction is expressed only by the dielectric permittivity or magnetic permeability. Here we show via polarized terahertz spectroscopy studies on multiferroic Ca2CoSi2O7, Sr2CoSi2O7 and Ba2CoGe2O7 that such magnetoeletric spin excitations exhibit quadrochroism, that is, they have different colours for all the four combinations of the two propagation directions (forward or backward) and the two orthogonal polarizations of a light beam. We demonstrate that one-way transparency can be realized for spin-wave excitations with sufficiently strong optical magnetoelectric effect. Furthermore, the transparent and absorbing directions of light propagation can be reversed by external magnetic fields. This magnetically controlled optical-diode function of magnetoelectric multiferroics may open a new horizon in photonics.

18.
Nat Commun ; 5: 3198, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24469318

RESUMEN

The magnetic skyrmion is a topologically stable spin texture in which the constituent spins point to all the directions wrapping a sphere. Generation and control of nanometric magnetic skyrmions have large potential, for example, reduced power consumption, in spintronics device applications. Here we show the real-space observation of a biskyrmion, as defined by a molecular form of two bound skyrmions with the total topological charge of 2, realized under magnetic field applied normal to a thin plate of a bilayered manganite with centrosymmetric structure. In terms of a Lorentz transmission electron microscopy (TEM), we have observed a distorted-triangle lattice of biskyrmion crystal, each composed of two bound skyrmions with oppositely swirling spins (magnetic helicities). Furthermore, we demonstrate that these biskyrmions can be electrically driven with orders of magnitude lower current density (<10(8) A m(-2)) than that for the conventional ferromagnetic domain walls.

19.
Phys Rev Lett ; 110(24): 246406, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25165947

RESUMEN

We report (29)Si NMR spectra and Knight shift measurements as a function of applied field orientation in the (001) basal plane of URu(2)Si(2). Observed linewidth oscillations confirm the in-plane twofold ordered domain state observed in recent magnetic susceptibility measurements. Analysis of our linewidth data leads to estimate ∼ 0.4% for the twofold intrinsic (monodomain) susceptibility anisotropy in the basal plane, a value ∼ 15 times smaller than that obtained from recent susceptibility measurements.

20.
J Int Med Res ; 39(2): 522-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21672356

RESUMEN

Ephrin B1 and its cognate receptor, Eph receptor B2, key regulators of embryogenesis, are expressed in human atherosclerotic plaque and inhibit adult human monocyte chemotaxis. Few data exist, however, regarding the gene expression profiles of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. Gene expression profiles were determined of all 21 members of this gene family in atherosclerosis-related cells by reverse transcription-polymerase chain reaction analysis. The following 17 members were detected in adult human peripheral blood monocytes: EFNA1 and EFNA3 - EFNA5 (coding for ephrins A1 and A3 - A5); EPHA1, EPHA2, EPHA4 - EPHA6 and EPHA8 (coding for Eph receptors A1, A2, A4 - A6 and A8); EFNB1 and EFNB2 (coding for ephrins B1 and B2); and EPHB1 - EPHB4 and EPHB6 (coding for Eph receptors B1 - B4 and B6). THP-1 monocytic cells, Jurkat T cells and adult arterial endothelial cells also expressed multiple EFN and EPH genes. These results indicate that a wide variety of ephrins and Eph receptors might affect monocyte chemotaxis, contributing to the development of atherosclerosis. Their pathological significance requires further study.


Asunto(s)
Efrinas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Familia de Multigenes/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Receptores de la Familia Eph/genética , Adulto , Células Endoteliales/metabolismo , Efrinas/metabolismo , Humanos , Células Jurkat , Monocitos/metabolismo , Receptores de la Familia Eph/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA