Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(5): 3536-3547, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38259997

RESUMEN

This study reports the synthesis of a mesoporous Mo and N codoped anatase TiO2 nanocomposite with many oxygen vacancies using a simple one-step hydrothermal method and subsequent calcination treatment. Both Mo and N were effectively co-incorporated into the anatase phase of TiO2 without MoOx phase segregation. The codoped catalyst demonstrated a mesoporous architecture with a surface area of 107.48 m2 g-1 and a pore volume of 0.2974 cm3 g-1. X-ray photoelectron spectroscopy confirmed that both Mo and N dissolved in the TiO2 lattice and created induced oxygen vacancies. The interaction of the dopants (Mo and N) and oxygen vacancies clearly affected TiO2 crystal formation. Photocatalytic performance of the nanocomposite was investigated in terms of the decomposition of methyl orange at a concentration of 50 mg L-1 in an aqueous solution. The results revealed a significant methyl orange degradation of up to 99.6% after 30 min irradiation under a UV light. The impressive performance of the nanocomposite is assigned to the synergetic effect of important factors, including the co-doping of metallic (Mo) and non-metallic (N) elements, oxygen vacancy defects, bandgap, crystallite size, mesoporous structure, and BET surface area.

2.
RSC Adv ; 13(36): 25081-25092, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37622010

RESUMEN

The doping of TiO2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO2. The doped TiO2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO2. According to the anatase texture results, it was found that the doping of TiO2 increased the specific surface area for Bi2O3@TiO2 without a change in the crystal structure or the crystal phase of TiO2. Also, XPS analysis confirmed the formation of Ti4+ and Ti3+ as a result of doping with Bi. The activities of both pure TiO2 and Bi-doped TiO2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi2O3@TiO2 reached 98.21%, which was much higher than the 42% achieved by pure TiO2. Doping TiO2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed.

3.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807398

RESUMEN

The thermal stability and mesomorphic behavior of a new biphenyl azomethine liquid crystal homologues series, (E)-4-(([1,1'-biphenyl]-4-ylmethylene)amino)phenyl 4-(alkoxy)benzoate, In, were investigated. The chemical structures of the synthesized compounds were characterized using FT-IR, NMR, and elemental analyses. Differential scanning calorimetry (DSC) and polarized optical microscopy were employed to evaluate the mesomorphic characteristics of the designed homologues. The examined homologues possessed high thermal stability and broad nematogenic temperature ranges. Furthermore, the homologues were covered by enantiotropic nematic phases. The experimental measurements of the mesomorphic behavior were substantiated by computational studies using the density functional theory (DFT) approach. The reactivity parameters, dipole moments, and polarizability of the studied molecules are discussed. The theoretical calculations demonstrated that as the chain length increased, the polarizability of the studied series increased; while it did not significantly affect the HOMO-LUMO energy gap and other reactivity descriptors, the biphenyl moiety had an essential impact on the stability of the possible geometries and their thermal as well as physical parameters.

5.
Mikrochim Acta ; 189(1): 3, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855016

RESUMEN

A dual-function organic-inorganic mesoporous structure is reported for naked-eye detection and removal of uranyl ions from an aqueous environment. The mesoporous sensor/adsorbent is fabricated via direct template synthesis of highly ordered silica monolith (HOM) starting from a quaternary microemulsion liquid crystalline phase. The produced HOM is subjected to further modifications through growing an organic probe, omega chrome black blue G (OCBBG), in the cavities and on the outer surface of the silica structure. The spectral response for [HOM-OCBBG → U(VI)] complex shows a maximum reflectance at λmax = 548 nm within 1 min response time (tR); the LOD is close to 9.1 µg/L while the LOQ approaches 30.4 µg/L, and this corresponds to the range of concentration where the signal is linear against U(VI) concentration (i.e., 5-1000 µg/L) at pH 3.4 with standard deviation (SD) of 0.079 (RSD% = 11.7 at n = 10). Experiments and DFT calculations indicate the existence of strong binding energy between the organic probe and uranyl ions forming a complex with blue color that can be detected by naked eyes even at low uranium concentrations. With regard to the radioactive remediation, the new mesoporous sensor/captor is able to reach a maximum capacity of 95 mg/g within a few minutes of the sorption process. The synthesized material can be regenerated using simple leaching and re-used several times without a significant decrease in capacity.

6.
Int J Biol Macromol ; 154: 621-633, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179117

RESUMEN

Drug delivery systems with controlled release have been considered important tools for the treatment of various diseases. The efficacy of the drug can be enhanced by increasing its solubility, stability, bioavailability, and specific site delivery. Herein, we investigated cisplatin (cisP) loading efficacy and release potentiality on chitosan (CS) functionalized with magnetite (M), silicon dioxide (S), and graphene oxide (GO) nanoparticles. Different nanocomposites [chitosan-coated magnetite, silicon dioxide, and graphene oxide (CS/M/S/GO); chitosan-coated magnetite and silicon dioxide (CS/M/S); chitosan-coated silicon dioxide (CS/S); and chitosan-coated magnetite (CS/M)] were prepared. The prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). DFT calculations were employed to explore the interaction mechanism of cisP with a selected chitosan-functionalized nanocomposite in the gas phase and water media. The UV-Vis spectroscopy was used to study cisP loading and release from the prepared nanocomposites. The results showed that the highest loading efficacy was achieved by CS/M and CS/M/S/GO nanocomposites (87% and 84% respectively). While the releasing potentiality for CS/M composite was the highest compared with the other ones (91%).


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Óxido Ferrosoférrico/química , Grafito/química , Nanocompuestos/química , Dióxido de Silicio/química , Cisplatino/metabolismo , Liberación de Fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-21081283

RESUMEN

A novel (N6O4) macrocyclic ligand (L) and its Cu(II) complexes have been prepared and characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and conductivity measurements. Quantum chemical calculations have also been carried out at B3LYP/6-31+G(d,p) to study the structure of the ligand and one of its complexes. The results show a novel macrocyclic ligand with potential amide oxygen atom, amide and amine nitrogen atoms available for coordination. Distorted square pyramidal ([Cu(L)Cl]Cl·2.5H2O (1), [Cu(L)NO3]NO(3)·3.5H2O (2), and [Cu(L)Br]Br·3H2O (4) and octahedral ([Cu(L)(OAc)2]·5H2O (3)) geometries were proposed. The EPR data of 1, 2, and 4 indicate d1x2(-y)2 ground state of Cu(II) ion with a considerable exchange interaction. The measured cytotoxicity for L and its complexes (1, 2) against three tumor cell lines showed that coordination improves the antitumor activity of the ligand; IC50 for breast cancer cells are ≈8.5, 3, and 4 µg/mL for L and complexes (1) and (2), respectively.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cobre/química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Magnetismo , Espectrometría de Masas , Modelos Químicos , Espectrofotometría Infrarroja , Temperatura , Termogravimetría , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...