Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(7): 659, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902579

RESUMEN

Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Autofagia , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Ratones , Neuronas/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
2.
Obesity (Silver Spring) ; 30(6): 1143-1155, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35578809

RESUMEN

Excess dietary sucrose is associated with obesity and metabolic diseases. This relationship is driven by the malfunction of several cell types and tissues critical for the regulation of energy balance, including hypothalamic neurons and white adipose tissue (WAT). However, the mechanisms behind these effects of dietary sucrose are still unclear and might be independent of increased adiposity. Accumulating evidence has indicated that dysregulation of autophagy, a fundamental process for maintenance of cellular homeostasis, alters energy metabolism in hypothalamic neurons and WAT, but whether autophagy could mediate the detrimental effects of dietary sucrose on hypothalamic neurons and WAT that contribute to weight gain is a matter of debate. In this review, we examine the hypothesis that dysregulated autophagy in hypothalamic neurons and WAT is an adiposity-independent effect of sucrose that contributes to increased body weight gain. We propose that excess dietary sucrose leads to autophagy unbalance in hypothalamic neurons and WAT, which increases caloric intake and body weight, favoring the emergence of obesity and metabolic diseases.


Asunto(s)
Tejido Adiposo Blanco , Sacarosa en la Dieta , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Autofagia , Peso Corporal , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo , Aumento de Peso
3.
Mol Cell Oncol ; 7(5): 1789418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944643

RESUMEN

High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.

4.
Artículo en Inglés | MEDLINE | ID: mdl-30972025

RESUMEN

Chronic consumption of high fat diets (HFDs), rich in saturated fatty acids (SatFAs) like palmitic acid (PA), is associated with the development of obesity and obesity-related metabolic diseases such as type II diabetes mellitus (T2DM). Previous studies indicate that PA accumulates in the hypothalamus following consumption of HFDs; in addition, HFDs consumption inhibits autophagy and reduces insulin sensitivity. Whether malfunction of autophagy specifically in hypothalamic neurons decreases insulin sensitivity remains unknown. PA does activate the Free Fatty Acid Receptor 1 (FFAR1), also known as G protein-coupled receptor 40 (GPR40); however, whether FFAR1 mediates the effects of PA on hypothalamic autophagy and insulin sensitivity has not been shown. Here, we demonstrate that exposure to PA inhibits the autophagic flux and reduces insulin sensitivity in a cellular model of hypothalamic neurons (N43/5 cells). Furthermore, we show that inhibition of autophagy and the autophagic flux reduces insulin sensitivity in hypothalamic neuronal cells. Interestingly, the inhibition of the autophagic flux, and the reduction in insulin sensitivity are prevented by pharmacological inhibition of FFAR1. Our findings show that dysregulation of autophagy reduces insulin sensitivity in hypothalamic neuronal cells. In addition, our data suggest FFAR1 mediates the ability of PA to inhibit autophagic flux and reduce insulin sensitivity in hypothalamic neuronal cells. These results reveal a novel cellular mechanism linking PA-rich diets to decreased insulin sensitivity in the hypothalamus and suggest that hypothalamic autophagy might represent a target for future T2DM therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...