Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38769250

RESUMEN

PURPOSE: The interaural time difference (ITD) is a primary horizontal-plane sound localization cue computed in the auditory brainstem. ITDs are accessible in the temporal fine structure of pure tones with a frequency of no higher than about 1400 Hz. How listeners' ITD sensitivity transitions from very best sensitivity near 700 Hz to impossible to detect within 1 octave currently lacks a fully compelling physiological explanation. Here, it was hypothesized that the rapid decline in ITD sensitivity is dictated not by a central neural limitation but by initial peripheral sound encoding, specifically, the low-frequency (apical) portion of the cochlear excitation pattern produced by a pure tone. METHODS: ITD sensitivity was measured in 16 normal-hearing listeners as a joint function of frequency (900-1500 Hz) and level (10-50 dB sensation level). RESULTS: Performance decreased with increasing frequency and decreasing sound level. The slope of performance decline was 90 dB/octave, consistent with the low-frequency slope of the cochlear excitation pattern. CONCLUSION: Fine-structure ITD sensitivity near 1400 Hz may be conveyed primarily by "off-frequency" activation of neurons tuned to lower frequencies near 700 Hz. Physiologically, this could be realized by having neurons sensitive to fine-structure ITD up to only about 700 Hz. A more extreme model would have only a single narrow channel near 700 Hz that conveys fine-structure ITDs. Such a model is a major simplification and departure from the classic formulation of the binaural display, which consists of a matrix of neurons tuned to a wide range of relevant frequencies and ITDs.

2.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37577552

RESUMEN

Purpose: The interaural time difference (ITD) is a primary horizontal-plane sound localization cue computed in the auditory brainstem. ITDs are accessible in the temporal fine structure of pure tones with a frequency of no higher than about 1400 Hz. Explaining how listeners' ITD sensitivity transitions from very best sensitivity near 700 Hz to impossible to detect within 1 octave currently lacks a fully compelling physiological explanation. Here, it was hypothesized that the rapid decline in ITD sensitivity is dictated not by a central neural limitation but by initial peripheral sound encoding, specifically, the low-frequency (apical) edge of the cochlear excitation pattern produced by a pure tone. Methods: ITD sensitivity was measured in 16 normal-hearing listeners as a joint function of frequency (900-1500 Hz) and level (10-50 dB sensation level). Results: Performance decreased with increasing frequency and decreasing sound level. The slope of performance decline was 90 dB/octave, consistent with the low-frequency slope of the cochlear excitation pattern. Conclusion: Fine-structure ITD sensitivity near 1400 Hz may be conveyed primarily by "off-frequency" activation of neurons tuned to lower frequencies near 700 Hz. Physiologically, this could be realized by having neurons sensitive to fine-structure ITD up to only about 700 Hz. A more extreme model would have only a single narrow channel near 700 Hz that conveys fine-structure ITDs. Such a model is a major simplification and departure from the classic formulation of the binaural display, which consists of a matrix of neurons tuned to a wide range of relevant frequencies and ITDs.

3.
Hear Res ; 440: 108896, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924633

RESUMEN

Objective assessment of spatial and binaural hearing deficits remains a major clinical challenge. The binaural interaction component (BIC) of the auditory brainstem response (ABR) holds promise as a non-invasive biomarker for diagnosing such deficits. However, while comparative studies have reported robust BIC in animal models, BIC in humans can sometimes be unreliably evoked even in subjects with normal hearing. Here we explore the hypothesis that the standard methodology for collecting monaural ABRs may not be ideal for electrophysiological assessment of binaural hearing. This study aims to improve ABR BIC measurements by determining more optimal stimuli to evoke it. Building on previous methodology demonstrated to enhance peak amplitude of monaural ABRs, we constructed a series of level-dependent chirp stimuli based on empirically derived latencies of monaural-evoked ABR waves I, IV and the binaural-evoked BIC DN1, the most prominent BIC peak, in a cohort of ten chinchillas. We hypothesized that chirps designed based on BIC DN1 latency would specifically enhance across-frequency temporal synchrony in the afferent inputs leading to the binaural circuits that produce the BIC and would thus produce a larger DN1 than either traditional clicks or chirps designed to optimize monaural ABRs. Compared to clicks, we found that level-specific chirp stimuli evoked significantly greater BIC DN1 amplitudes, and that this effect persisted across all stimulation levels tested. However, we found no significant differences between BICs resulting from chirps created using binaural-evoked BIC DN1 latencies and those using monaural-evoked ABR waves I or IV. These data indicate that existing level-specific, monaural-based chirp stimuli may improve BIC detectability and reduce variability in human BIC measurements.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva , Animales , Humanos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Estimulación Acústica , Audición/fisiología , Potenciales Evocados Auditivos/fisiología , Pérdida Auditiva/diagnóstico , Chinchilla
4.
Hear Res ; 437: 108839, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429100

RESUMEN

The binaural interaction component (BIC) of the auditory brainstem response (ABR) is the difference obtained after subtracting the sum of right and left ear ABRs from binaurally evoked ABRs. The BIC has attracted interest as a biomarker of binaural processing abilities. Best binaural processing is presumed to require spectrally-matched inputs at the two ears, but peripheral pathology and/or impacts of hearing devices can lead to mismatched inputs. Such mismatching can degrade behavioral sensitivity to interaural time difference (ITD) cues, but might be detected using the BIC. Here, we examine the effect of interaural frequency mismatch (IFM) on BIC and behavioral ITD sensitivity in audiometrically normal adult human subjects (both sexes). Binaural and monaural ABRs were recorded and BICs computed from subjects in response to narrowband tones. Left ear stimuli were fixed at 4000 Hz while right ear stimuli varied over a ∼2-octave range (re: 4000 Hz). Separately, subjects performed psychophysical lateralization tasks using the same stimuli to determine ITD discrimination thresholds jointly as a function of IFM and sound level. Results demonstrated significant effects of IFM on BIC amplitudes, with lower amplitudes in mismatched conditions than frequency-matched. Behavioral ITD discrimination thresholds were elevated at mismatched frequencies and lower sound levels, but also more sharply modulated by IFM at lower sound levels. Combinations of ITD, IFM and overall sound level that resulted in fused and lateralized percepts were bound by the empirically-measured BIC, and also by model predictions simulated using an established computational model of the brainstem circuit thought to generate the BIC.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Localización de Sonidos , Masculino , Adulto , Femenino , Humanos , Estimulación Acústica/métodos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Tronco Encefálico/fisiología , Electroencefalografía , Localización de Sonidos/fisiología
5.
Hear Res ; 433: 108766, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084504

RESUMEN

A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.


Asunto(s)
Percepción Auditiva , Audición , Animales , Humanos , Audición/fisiología , Percepción Auditiva/fisiología , Oído/fisiología , Pruebas Auditivas , Sonido , Mamíferos
6.
Children (Basel) ; 10(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980158

RESUMEN

Our objective was to examine the effects of hearing aid amplification on auditory detection and discrimination in infants who were hard of hearing (IHH) using a physiological measure of auditory perception. We recorded EEG from 41 sleeping IHH aged 1.04 to 5.62 months while presenting auditory stimuli in a mismatch response paradigm. Responses were recorded during two listening conditions for each participant: aided and unaided. Temporal envelopes of the mismatch response in the EEG alpha band (6-12 Hz) were extracted from the latent, time-frequency transformed data. Aided alpha band responses were greater than unaided responses for the deviant trials but were not different for the standard trials. Responses to the deviant trials were greater than responses to the standard trials for the aided conditions but were not different for the unaided conditions. These results suggest that the alpha band mismatch can be used to examine both detection and discrimination of speech and non-speech sounds in IHH. With further study, the alpha band mismatch could expand and refine our abilities to validate hearing aid fittings at younger ages than current clinical protocols allow.

7.
Otol Neurotol ; 44(5): e311-e318, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36962010

RESUMEN

OBJECTIVE: To test a method to measure the efficacy of active middle ear implants when coupled to the round window. METHODS: Data previously published in Koka et al. ( Hear Res 2010;263:128-137) were used in this study. Simultaneous measurements of cochlear microphonics (CM) and stapes velocity in response to both acoustic stimulation (forward direction) and round window (RW) stimulation (reverse direction) with an active middle ear implant (AMEI) were made in seven ears in five chinchillas. For each stimulus frequency, the amplitude of the CM was measured separately as a function of intensity (dB SPL or dB mV). Equivalent vibrational input to the cochlea was determined by equating the acoustic and AMEI-generated CM amplitudes for a given intensity. In the condition of equivalent CM amplitude between acoustic and RW stimulation-generated output, we assume that the same vibrational input to the cochlea was present regardless of the route of stimulation. RESULTS: The measured stapes velocities for equivalent CM output from the two types of input were not significantly different for low and medium frequencies (0.25-4 kHz); however, the velocities for AMEI-RW drive were significantly lower for higher frequencies (4-14 kHz). Thus, for RM stimulation with an AMEI, stapes velocities can underestimate the mechanical input to the cochlea by ~20 dB for frequencies greater than ~4 kHz. CONCLUSIONS: This study confirms that stapes velocity (with the assumption of equivalent stapes velocity for forward and reverse stimulation) cannot be used as a proxy for effective input to the cochlea when it is stimulated in the reverse direction. Future research on application of intraoperative electrophysiological measurements during surgery (CM, compound action potential, or auditory brainstem response) for estimating efficacy and optimizing device coupling and performance is warranted.


Asunto(s)
Prótesis Osicular , Estribo , Humanos , Estribo/fisiología , Ventana Redonda/cirugía , Ventana Redonda/fisiología , Cóclea/cirugía , Cóclea/fisiología , Estimulación Acústica , Oído Medio/cirugía , Oído Medio/fisiología
8.
J Acoust Soc Am ; 152(1): 437, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931550

RESUMEN

Animals localise sound by making use of acoustical cues resulting from space and frequency dependent filtering of sound by the head and body. Sound arrives at each ear at different times, with different intensities, and with varying spectral content, all of which are affected by the animal's head and the relative sound source position. Location cues in mammals benefit from structures (pinnae) that modify these cues and provide information that helps resolve the cone of confusion and provide cues to sound source elevation. Animals without pinnae must rely on other mechanisms to solve localisation problems. Most non-mammals lack pinna-like structures, but some possess other anatomical features that could influence hearing. One such animal is the frill-necked lizard (Chlamydosaurus kingii). The species' elaborate neck frill has been speculated to act as an aid to hearing, but no acoustical measurements have been reported. In this study, we characterise the frill's influence on the acoustical information available to the animal. Results suggest that the change in binaural cues is not sufficiently large to impact localisation behavior within the species' likely audiometric range; however, the frill does increase gain for sounds directly in front of the animal similar to a directional microphone.


Asunto(s)
Lagartos , Localización de Sonidos , Estimulación Acústica , Animales , Señales (Psicología) , Audición , Mamíferos , Sonido
9.
Proc Biol Sci ; 289(1980): 20220878, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946148

RESUMEN

Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.


Asunto(s)
Tronco Encefálico , Ratas Topo , Animales , Percepción Auditiva/fisiología , Tronco Encefálico/anatomía & histología , Gerbillinae , Hipocampo , Ratones , Ratas Topo/fisiología
11.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34872939

RESUMEN

The binaural interaction component (BIC) is a sound-evoked electrophysiological signature of binaural processing in the auditory brainstem that has received attention as a potential biomarker for spatial hearing deficits. Yet the number of trials necessary to evoke the BIC, or its measurability, seems to vary across species: while it is easily measured in small rodents, it has proven to be highly variable and less reliably measured in humans. This has hindered its potential use as a diagnostic tool. Further measurements of the BIC across a wide range of species could help us better understand its origin and the possible reasons for the variation in its measurability. Statistical analysis on the function relating BIC DN1 amplitude and the interaural time difference has been performed in only a few small rodent species, thus it remains to be shown how the results apply to more taxonomically diverse mammals, and those with larger heads. To fill this gap, we measured BICs in rhesus macaque. We show the overall behavior of the BIC is the same as in smaller rodents, suggesting that the brainstem circuit responsible for the BIC is conserved across a wider range of mammals. We suggest that differences in measurability are likely because of differences in head size.


Asunto(s)
Tronco Encefálico , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica , Animales , Macaca mulatta , Sonido
12.
Front Neurol ; 12: 777010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970211

RESUMEN

Mixed hearing loss associated with a sensorineural component and an impaired conductive mechanism for sound from the external ear canal to the cochlea represents a challenge for rehabilitation using either surgery or traditional hearing amplification. Direct stimulations of the ossicular chain and the round window (RW) membrane have allowed an improved hearing in this population. The authors review the developments in basic and clinical research that have allowed the exploration of new routes for inner ear stimulation. Similar changes occur in the electrophysiological measures in response to auditory stimulation through the traditional route and direct mechanical stimulation of the RW. The latter has proven to be very effective as a means of hearing rehabilitation in a group of patients with significant difficulties with hearing and communication.

13.
Front Neurosci ; 15: 721922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790088

RESUMEN

Temporary conductive hearing loss (CHL) can lead to hearing impairments that persist beyond resolution of the CHL. In particular, unilateral CHL leads to deficits in auditory skills that rely on binaural input (e.g., spatial hearing). Here, we asked whether single neurons in the auditory midbrain, which integrate acoustic inputs from the two ears, are altered by a temporary CHL. We introduced 6 weeks of unilateral CHL to young adult chinchillas via foam earplug. Following CHL removal and restoration of peripheral input, single-unit recordings from inferior colliculus (ICC) neurons revealed the CHL decreased the efficacy of inhibitory input to the ICC contralateral to the earplug and increased inhibitory input ipsilateral to the earplug, effectively creating a higher proportion of monaural responsive neurons than binaural. Moreover, this resulted in a ∼10 dB shift in the coding of a binaural sound location cue (interaural-level difference, ILD) in ICC neurons relative to controls. The direction of the shift was consistent with a compensation of the altered ILDs due to the CHL. ICC neuron responses carried ∼37% less information about ILDs after CHL than control neurons. Cochlear peripheral-evoked responses confirmed that the CHL did not induce damage to the auditory periphery. We find that a temporary CHL altered auditory midbrain neurons by shifting binaural responses to ILD acoustic cues, suggesting a compensatory form of plasticity occurring by at least the level of the auditory midbrain, the ICC.

14.
J Acoust Soc Am ; 149(6): 4630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34241434

RESUMEN

The interaural level difference (ILD) is a robust indicator of sound source azimuth, and human ILD sensitivity persists under conditions that degrade normally-dominant interaural time difference (ITD) cues. Nonetheless, ILD sensitivity varies somewhat with both stimulus frequency and interaural correlation (coherence). To further investigate the combined binaural perceptual influence of these variables, the present study assessed ILD sensitivity at frequencies 250-4000 Hz using stimuli of varied interaural correlation. In the first of two experiments, ILD discrimination thresholds were modestly elevated, and subjective lateralization slightly reduced, for both half-correlated and uncorrelated narrowband noise tokens relative to correlated tokens. Different from thresholds in the correlated condition, which were worst at 1000 Hz [Grantham, D.W. (1984). J. Acoust. Soc. Am. 75, 1191-1194], thresholds in the decorrelated conditions were independent of frequency. However, intrinsic envelope fluctuations in narrowband stimuli caused moment-to-moment variation of the nominal ILD, complicating interpretation of measured thresholds. Thus, a second experiment employed low-fluctuation noise tokens, revealing a clear effect of interaural decoherence per se that was strongly frequency-dependent, decreasing in magnitude from low to high frequencies. Measurements are consistent with known integration times in ILD-sensitive neurons and also suggest persistent influences of covert ITD cues in putative "ILD" tasks.


Asunto(s)
Localización de Sonidos , Estimulación Acústica , Señales (Psicología) , Umbral Diferencial , Humanos , Ruido/efectos adversos , Sonido
15.
PLoS Comput Biol ; 17(7): e1009130, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242210

RESUMEN

Sound localization relies on minute differences in the timing and intensity of sound arriving at both ears. Neurons of the lateral superior olive (LSO) in the brainstem process these interaural disparities by precisely detecting excitatory and inhibitory synaptic inputs. Aging generally induces selective loss of inhibitory synaptic transmission along the entire auditory pathways, including the reduction of inhibitory afferents to LSO. Electrophysiological recordings in animals, however, reported only minor functional changes in aged LSO. The perplexing discrepancy between anatomical and physiological observations suggests a role for activity-dependent plasticity that would help neurons retain their binaural tuning function despite loss of inhibitory inputs. To explore this hypothesis, we use a computational model of LSO to investigate mechanisms underlying the observed functional robustness against age-related loss of inhibitory inputs. The LSO model is an integrate-and-fire type enhanced with a small amount of low-voltage activated potassium conductance and driven with (in)homogeneous Poissonian inputs. Without synaptic input loss, model spike rates varied smoothly with interaural time and level differences, replicating empirical tuning properties of LSO. By reducing the number of inhibitory afferents to mimic age-related loss of inhibition, overall spike rates increased, which negatively impacted binaural tuning performance, measured as modulation depth and neuronal discriminability. To simulate a recovery process compensating for the loss of inhibitory fibers, the strength of remaining inhibitory inputs was increased. By this modification, effects of inhibition loss on binaural tuning were considerably weakened, leading to an improvement of functional performance. These neuron-level observations were further confirmed by population modeling, in which binaural tuning properties of multiple LSO neurons were varied according to empirical measurements. These results demonstrate the plausibility that homeostatic plasticity could effectively counteract known age-dependent loss of inhibitory fibers in LSO and suggest that behavioral degradation of sound localization might originate from changes occurring more centrally.


Asunto(s)
Envejecimiento/fisiología , Neuronas , Localización de Sonidos/fisiología , Complejo Olivar Superior , Animales , Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Gatos , Biología Computacional , Señales (Psicología) , Humanos , Ratones , Modelos Neurológicos , Neuronas/citología , Neuronas/fisiología , Ratas , Complejo Olivar Superior/citología , Complejo Olivar Superior/fisiología
16.
Ear Hear ; 42(3): 629-643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33141776

RESUMEN

OBJECTIVES: The binaural interaction component (BIC) of the auditory brainstem response (ABR) is obtained by subtracting the sum of the monaural right and left ear ABRs from the binaurally evoked ABR. The result is a small but prominent negative peak (herein called "DN1"), indicating a smaller binaural than summed ABR, which occurs around the latency of wave V or its roll-off slope. The BIC has been proposed to have diagnostic value as a biomarker of binaural processing abilities; however, there have been conflicting reports regarding the reliability of BIC measures in human subjects. The objectives of the current study were to: (1) examine prevalence of BIC across a large group of normal-hearing young adults; (2) determine effects of interaural time differences (ITDs) on BIC; and (3) examine any relationship between BIC and behavioral ITD discrimination acuity. DESIGN: Subjects were 40 normal-hearing adults (20 males and 20 females), aged 21 to 48 years, with no history of otologic or neurologic disorders. Midline ABRs were recorded from electrodes at high forehead (Fz) referenced to the nape of the neck (near the seventh cervical vertebra), with Fpz (low forehead) as the ground. ABRs were also recorded with a conventional earlobe reference for comparison to midline results. Stimuli were 90 dB peSPL biphasic clicks. For BIC measurements, stimuli were presented in a block as interleaved right monaural, left monaural, and binaural stimuli with 2000+ presentations per condition. Four measurements were averaged for a total of 8000+ stimuli per analyzed waveform. BIC was measured for ITD = 0 (simultaneous bilateral) and for ITDs of ±500 and ±750 µs. Subjects separately performed a lateralization task, using the same stimuli, to determine ITD discrimination thresholds. RESULTS: An identifiable BIC DN1 was obtained in 39 of 40 subjects at ITD = 0 µs in at least one of two measurement sessions, but was seen in lesser numbers of subjects in a single session or as ITD increased. BIC was most often seen when a subject was relaxed or sleeping, and less often when they fidgeted or reported neck tension, suggesting myogenic activity as a possible factor in disrupting BIC measurements. Mean BIC latencies systematically increased with increasing ITD, and mean BIC amplitudes tended to decrease. However, across subjects, there was no significant relationship between the amplitude or latency of the BIC and behavioral ITD thresholds. CONCLUSIONS: Consistent with previous studies, measurement of the BIC was time consuming and a BIC was sometimes difficult to obtain in awake normal-hearing subjects. The BIC will thus continue to be of limited clinical utility unless stimulus parameters and measurement techniques can be identified that produce a more robust response. Nonetheless, modulation of BIC characteristics by ITD supports the concept that the ABR BIC indexes aspects of binaural brainstem processing and thus may prove useful in selected research applications, e.g. in the examination of populations expected to have aberrant binaural signal processing ability.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pruebas Auditivas , Estimulación Acústica , Tronco Encefálico , Electrodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
17.
Comp Med ; 70(4): 370-375, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32731906

RESUMEN

During a 6-mo period, two 5-6 mo old female chinchillas (Chinchilla lanigera) were examined at the University of Colorado Anschutz Medical Campus after the discovery of firm, nonmobile masses in the left ventral cervical and left axillary region. Other than these findings and mild weight loss, both chinchillas' physical exams were normal. Bloodwork revealed an inflammatory leukogram characterized by leukocytosis, toxic neutrophils, lymphopenia, and monocytosis with mild, nonregenerative anemia. At necropsy, both masses were identified as abscesses. Streptococcus equi, subspecies zooepidemicus (S. zooepidemicus) was isolated in pure culture. Histology of the lungs, liver, spleen, and kidneys showed a marked increase in the numbers of both polymorphonuclear leukocytes and lymphocytes. Both animals were deemed unsuitable for research and were euthanized under isoflurane anesthesia by an intracardiac injection of pentobarbital sodium solution. S. zooepidemicus is an opportunistic, commensal organism found in the upper respiratory tract of horses. This organism has been documented to cause disease in other species and is zoonotic. Infections in humans have been reported, resulting in glomerulonephritis, endocarditis, septic arthritis, osteomyelitis, meningitis, and death. To aid in diagnosis and prospective surveillance of this bacteria, oral and nasal swabs were collected from the remaining cohort of chinchillas, and a qPCR screening assay was implemented. Within 12 mo, 4 of 41 additional females tested positive by culture or qPCR, resulting in a disease prevalence of 14% (6 of 43). However, only 2 of the additional 4 S. zooepidemicus positive animals developed clinical signs. The potential for the spread of infection, zoonosis, and adverse effects on research demonstrate that surveillance for S. zooepidemicus should be considered in a biomedical research environment.


Asunto(s)
Chinchilla , Enfermedades de los Roedores/microbiología , Infecciones Estreptocócicas/microbiología , Animales , Zoonosis Bacterianas/microbiología , Zoonosis Bacterianas/transmisión , Femenino , Estudios Prospectivos , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/patología , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/patología , Streptococcus equi/aislamiento & purificación
18.
Hear Res ; 395: 108043, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32828615

RESUMEN

Sound and hearing play an important role in the lives of many birds, and studies have been published on the acoustic habitat of various species, as well as on various aspects of their hearing system. However the function of the middle ear remains largely unexplored, with existing studies focusing on either single species, or a very narrow range of species. In this article we report measurements of the middle ear transfer function in 39 taxonomically diverse avian species. We used laser vibrometry to measure the vibrations of the columellar footplate in response to tones played in each animal's ear canal, and calculated the middle ear transfer functions. Transfer functions varied substantially across species, but appeared to follow common trends. Comparisons between the peak frequency in the transfer function and length/mass of the columella reveal a correlation between the three, however statistical analysis suggests that columellar length is a primary indicator of the peak frequency. These results provide a broad survey of avian middle ear function, and the observed trends provide a method with which to begin to predict the response of single ossicle middle ear systems.


Asunto(s)
Oído Medio , Animales , Aves , Audición , Sonido
19.
Hear Res ; 395: 108017, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32709398

RESUMEN

This article presents a comparative study of morphology of the avian middle ear. The general morphology of the columella shows considerable variation across species, yet few studies have attempted to provide quantitative comparisons, and basic anatomical data has not been thoroughly reported. In this study, we examined the middle ear in 49 taxonomically diverse species of bird. We found significant correlations between measurements of several features (columellar length, mass, tympanic membrane area, footplate area) and interaural diameter. While scaling of columellar length with interaural diameter is consistent with isometry, masses and areas showed negative allometry, or a non-proportional scaling with interaural diameter. These observations remained true even for species with unusual middle ear morphology, such as Alcedinidae (Kingfishers) in which the basal struts of the columella form a structure almost resembling a mammalian stapes, or Tytonidae (Barn Owls) which have a highly bulbous footplate. It therefore appears that allometry cannot help explain the morphological variation in the columella.


Asunto(s)
Oído Medio , Animales , Aves , Mamíferos , Estribo , Membrana Timpánica
20.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31953317

RESUMEN

The auditory brainstem compares sound-evoked excitation and inhibition from both ears to compute sound source location and determine spatial acuity. Although alterations to the anatomy and physiology of the auditory brainstem have been demonstrated in fragile X syndrome (FXS), it is not known whether these changes cause spatial acuity deficits in FXS. To test the hypothesis that FXS-related alterations to brainstem circuits impair spatial hearing abilities, a reflexive prepulse inhibition (PPI) task, with variations in sound (gap, location, masking) as the prepulse stimulus, was used on Fmr1 knock-out mice and B6 controls. Specifically, Fmr1 mice show decreased PPI compared with wild-type mice during gap detection, changes in sound source location, and spatial release from masking with no alteration to their overall startle thresholds compared with wild-type mice. Last, Fmr1 mice have increased latency to respond in these tasks, suggesting additional impairments in the pathway responsible for reacting to a startling sound. This study further supports data in humans with FXS that show similar deficits in PPI.


Asunto(s)
Síndrome del Cromosoma X Frágil , Audición , Estimulación Acústica , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...