Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 29(12): 3233-3242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996709

RESUMEN

Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition.


Asunto(s)
Aborto Espontáneo , Placenta , Embarazo , Femenino , Humanos , Primer Trimestre del Embarazo/genética , Aborto Espontáneo/genética , Prevalencia , Aberraciones Cromosómicas , Mosaicismo , ADN
2.
Cytogenet Genome Res ; 162(3): 97-108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35636401

RESUMEN

Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; p = 0.019). To exclude primary causes of sXCI, sequencing of the XIST and XACT genes was performed. The XIST and XACT gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.


Asunto(s)
Aborto Inducido , Aborto Espontáneo , Aborto Espontáneo/genética , Biomarcadores , Cromosomas , Cromosomas Humanos X/genética , Femenino , Humanos , Embarazo , Receptores Androgénicos/genética , Inactivación del Cromosoma X/genética
3.
Sci Rep ; 12(1): 1166, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064135

RESUMEN

The presence of an extra chromosome in the embryo karyotype often dramatically affects the fate of pregnancy. Trisomy 16 is the most common aneuploidy in first-trimester miscarriages. The present study identified changes in DNA methylation in chorionic villi of miscarriages with trisomy 16. Ninety-seven differentially methylated sites in 91 genes were identified (false discovery rate (FDR) < 0.05 and Δß > 0.15) using DNA methylation arrays. Most of the differentially methylated genes encoded secreted proteins, signaling peptides, and receptors with disulfide bonds. Subsequent analysis using targeted bisulfite massive parallel sequencing showed hypermethylation of the promoters of specific genes in miscarriages with trisomy 16 but not miscarriages with other aneuploidies. Some of the genes were responsible for the development of the placenta and embryo (GATA3-AS1, TRPV6, SCL13A4, and CALCB) and the formation of the mitotic spindle (ANKRD53). Hypermethylation of GATA3-AS1 was associated with reduced expression of GATA3 protein in chorionic villi of miscarriages with trisomy 16. Aberrant hypermethylation of genes may lead to a decrease in expression, impaired trophoblast differentiation and invasion, mitotic disorders, chromosomal mosaicism and karyotype self-correction via trisomy rescue mechanisms.


Asunto(s)
Aborto Espontáneo/genética , Vellosidades Coriónicas/patología , Metilación de ADN , Trisomía/genética , Aborto Espontáneo/patología , Cromosomas Humanos Par 16/genética , Islas de CpG/genética , Epigénesis Genética , Femenino , Humanos , Cariotipificación , Mosaicismo , Embarazo , Primer Trimestre del Embarazo , Trisomía/patología
4.
J Assist Reprod Genet ; 38(11): 2893-2908, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34554362

RESUMEN

PURPOSE: Comparative analysis of multilocus imprinting disturbances (MLIDs) in miscarriages from women with sporadic (SPL) and recurrent pregnancy loss (RPL) and identification of variants in the imprinting control gene NLRP7 that may lead to MLIDs. METHODS: Chorionic cytotrophoblast and extraembryonic mesoderm samples from first-trimester miscarriages were evaluated in 120 women with RPL and 134 women with SPL; 100 induced abortions were analyzed as a control group. All miscarriages had a normal karyotype. Epimutations in 7 imprinted genes were detected using methyl-specific PCR and confirmed with DNA pyrosequencing. Sequencing of all 13 exons and adjusted intron regions of the NLRP7 gene was performed. RESULTS: Epimutations in imprinted genes were more frequently detected (p < 0.01) in the placental tissues of miscarriages from women with RPL (7.1%) than in those of women with SPL (2.7%). The predominant epimutation was postzygotic hypomethylation of maternal alleles of imprinted genes (RPL, 5.0%; SPL, 2.1%; p < 0.01). The frequency of MLID was higher among miscarriages from women with RPL than among miscarriages from women with SPL (1.7% and 0.4%, respectively, p < 0.01). Variants in NLRP7 were detected only in miscarriages from women with RPL. An analysis of the parental origin of NLRP7 variants revealed heterozygous carriers in families with RPL who exhibited spontaneous abortions with MLIDs and compound heterozygosity for NLRP7 variants. CONCLUSION: RPL is associated with NLRP7 variants that lead to germinal and postzygotic MLIDs that are incompatible with normal embryo development. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Aborto Habitual/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Metilación de ADN , Impresión Genómica , Heterocigoto , Mutación , Aborto Habitual/etiología , Aborto Habitual/genética , Adulto , Femenino , Humanos , Masculino , Embarazo
5.
MethodsX ; 8: 101445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434857

RESUMEN

The methylation index of the LINE-1 promoter is one of the most commonly used markers for assessing the global level of genome methylation in various human cells and tissues. We developed an NGS-based protocol for DNA methylation analysis of the LINE-1 retrotransposon promoter. This approach allows assessment of the DNA methylation index of 19 CpG sites in the LINE-1 promoter that have the highest tissue- or tumor-specific variability. The method provides a DNA methylation profile for analyzing either the methylation index of each CpG site independently or the mean DNA methylation index across the LINE-1 promoter. The results obtained using the developed method corresponded well to the level of methylation assessed using a commercially available kit for DNA pyrosequencing. In addition, our method provides much more information: 1) the DNA methylation profile of a significant part of the LINE-1 promoter and 2) the level of DNA methylation at individual LINE-1 loci in the genome. The method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter can be used in large-scale studies of the global level of genome methylation in normal human cells or tumors. To accomplish this, we modified the targeted massive parallel sequencing method based on 16S Metagenomic Sequencing Library Preparation protocol (Illumina, USA) by:•Introduction of the stage of bisulfite conversion of DNA.•Development of specific primers for the LINE-1 sequence.

6.
Cytogenet Genome Res ; 161(3-4): 105-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33849037

RESUMEN

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Metilación de ADN , Discapacidades del Desarrollo/genética , Endopeptidasas/genética , Discapacidad Intelectual/genética , Adolescente , Adulto , Niño , Preescolar , Islas de CpG/genética , Salud de la Familia , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Herencia Materna/genética
7.
J Assist Reprod Genet ; 38(1): 139-149, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33170392

RESUMEN

PURPOSE: High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy. METHODS: The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8-10, 13-15, 16, 18, 20-22, and monosomy X using massive parallel sequencing. RESULTS: The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 ± 4.3%) and monosomy X (46.9 ± 4.2%) compared with that in induced abortions (40.0 ± 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = - 0.31, p = 0.029) and with trisomy 21 (R = - 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003). CONCLUSION: Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences.


Asunto(s)
Aborto Espontáneo/genética , Metilación de ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Primer Trimestre del Embarazo/genética , Aborto Espontáneo/patología , Adulto , Aneuploidia , Vellosidades Coriónicas/crecimiento & desarrollo , Vellosidades Coriónicas/patología , Desarrollo Embrionario/genética , Femenino , Humanos , Embarazo
8.
Genes (Basel) ; 11(9)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957536

RESUMEN

Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.


Asunto(s)
Aneuploidia , Metilación de ADN , Embrión de Mamíferos/patología , Desarrollo Embrionario , Epigenómica , Inestabilidad Genómica , Embrión de Mamíferos/metabolismo , Genoma Humano , Humanos
9.
Cytogenet Genome Res ; 160(5): 245-254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32485717

RESUMEN

Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.


Asunto(s)
Aborto Habitual/genética , Deleción Cromosómica , Cromosomas Humanos X/genética , Madres , Enzimas Ubiquitina-Conjugadoras/deficiencia , Enzimas Ubiquitina-Conjugadoras/genética , Inactivación del Cromosoma X/genética , Adulto , Preescolar , Epigénesis Genética , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Fenotipo , Síndrome , Adulto Joven
10.
Am J Med Genet A ; 176(11): 2395-2403, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244536

RESUMEN

The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.


Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica/genética , Enfermedad de Darier/complicaciones , Enfermedad de Darier/genética , Cejas/anomalías , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Laminina/genética , Mosaicismo , Adolescente , Niño , Preescolar , Hibridación Genómica Comparativa , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Piel/patología
11.
Mol Cytogenet ; 11: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736186

RESUMEN

BACKGROUND: Ring chromosome instability may influence a patient's phenotype and challenge its interpretation. RESULTS: Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a de novo 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb TUSC7 deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient's lymphocytes and skin fibroblasts, respectively, had monosomy 22. CONCLUSIONS: We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the in vivo presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.

12.
Biomed Hub ; 1(1): 1-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31988885

RESUMEN

BACKGROUND: The majority of miscarriages are sporadic; however, 1-5% of couples experience recurrent pregnancy loss (RPL). Approximately 50-60% of miscarriages result from chromosomal abnormalities. Currently, there are conflicting reports regarding the rates of chromosomal abnormalities between recurrent and sporadic pregnancy losses. METHODS: A retrospective comparative cytogenetic analysis of 442 RPL and 466 sporadic abortions (SA) was performed. Maternal age and medical background were evaluated, and chromosomal abnormality rates were compared between groups. RESULTS: The frequency of embryos with abnormal karyotypes was significantly higher in SA compared to RPL (56.7 and 46.6%, respectively), and abortions from women under 30 years of age were the main contributor to this difference. An age-dependent increase in the abnormal karyotype rate was observed in two groups of women - those with SA [53.0 and 70.1% for younger and older (≥35-year-old) mothers, respectively] and those with idiopathic RPL without any concomitant reproductive pathology (46.5 and 78.4% for younger and older mothers) - but not in the group of women with RPL associated with concomitant reproductive pathology. The incidence of recurrent abnormal karyotypes in subsequent miscarriages was significantly higher than random probability (odds ratio = 22.75). CONCLUSION: Our findings highlight the variability in the risk of aneuploidy in recurrent abortion.

13.
Gene ; 536(1): 145-50, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24291026

RESUMEN

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Adolescente , Niño , Preescolar , Aberraciones Cromosómicas , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 4/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Masculino , Federación de Rusia
14.
Mol Cytogenet ; 7(1): 97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25606055

RESUMEN

BACKGROUND: Detection of submicroscopic chromosomal alterations in patients with a idiopathic intellectual disability (ID) allows significant improvement in delineation of the regions of the genome that are associated with brain development and function. However, these chromosomal regions usually contain several protein-coding genes and regulatory elements, complicating the understanding of genotype-phenotype correlations. We report two siblings with ID and an unrelated patient with atypical autism who had 3p26.3 microdeletions and one intellectually disabled patient with a 3p26.3 microduplication encompassing only the CNTN6 gene. RESULTS: Two 295.1-kb microdeletions and one 766.1-kb microduplication of 3p26.3 involving a single gene, CNTN6, were identified with an Agilent 60K array. Another 271.9-kb microdeletion of 3p26.3 was detected using an Affymetrix CytoScan HD chromosome microarray platform. The CHL1 and CNTN4 genes, although adjacent to the CNTN6 gene, were not affected in either of these patients. CONCLUSIONS: The protein encoded by CNTN6 is a member of the immunoglobulin superfamily and functions as a cell adhesion molecule that is involved in the formation of axon connections in the developing nervous system. Our results indicate that CNTN6 may be a candidate gene for ID.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...