Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 98(2): 306-319.e7, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29606582

RESUMEN

Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS.


Asunto(s)
Astrocitos/metabolismo , Neuronas Motoras/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Recién Nacidos , Astrocitos/química , Astrocitos/patología , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/química , Neuronas Motoras/patología , Técnicas de Cultivo de Órganos , Canales de Potasio de Rectificación Interna/análisis
2.
Neuron ; 94(4): 840-854.e7, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28479102

RESUMEN

The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active) phase that dissipates to sub-saturating levels during the light (sleep) phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically tested α7nAChR agonist successfully enhances NMDAR activation. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Sinapsis/metabolismo , Vigilia/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Animales , Conducta Animal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Condicionamiento Psicológico , Electroencefalografía , Electromiografía , Miedo , Hipocampo/citología , Inmunohistoquímica , Aprendizaje , Memoria , Ratones , Ratones Transgénicos , Microdiálisis , Músculos del Cuello , Agonistas Nicotínicos/farmacología , Imagen Óptica , Optogenética , Quinuclidinas/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Serina , Tiofenos/farmacología , Vigilia/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
3.
Artículo en Inglés | MEDLINE | ID: mdl-28093548

RESUMEN

Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.


Asunto(s)
Astrocitos/fisiología , Plasticidad Neuronal , Transmisión Sináptica , Animales , Encéfalo/fisiología , Comunicación Celular , Humanos
4.
Exp Neurol ; 267: 115-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25779930

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS.


Asunto(s)
Adenosina/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Receptor de Adenosina A2A/deficiencia , Transducción de Señal/fisiología , Adenosina/uso terapéutico , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Complejo Mediador/genética , Complejo Mediador/metabolismo , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Purinas/farmacología , Purinas/uso terapéutico , Receptor de Adenosina A2A/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Médula Espinal/patología , Superóxido Dismutasa/genética
5.
J Neurosci ; 34(33): 10950-62, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25122895

RESUMEN

Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes. Our analysis found a particularly high increase in the number of VGluT1(+) neuronal glutamatergic synapses that are ensheathed by processes from individual developing astroglia from postnatal day (P) 14 to P26, when astroglia undergo dramatic postnatal maturation. Subsequent silencing of VGluT1(+) synaptic activity in VGluT1 KO mice significantly reduces astroglial domain growth and the induction of GLT1 in the cortex, but has no effect on astroglia in the hypothalamus, where non-VGluT1(+) synaptic signaling predominates. In particular, electron microscopy analysis showed that the loss of VGluT1(+) synaptic signaling significantly decreases perisynaptic enshealthing of astroglial processes on synapses. To further determine whether synaptically released glutamate mediates VGluT1(+) synaptic signaling, we pharmacologically inhibited and genetically ablated metabotropic glutamate receptors (mGluRs, especially mGluR5) in developing cortical astroglia and found that developmental arborization of astroglial processes and expression of functional proteins, such as GLT1, is significantly decreased. In summary, our genetic analysis provides new in vivo evidence that VGluT1(+) glutamatergic signaling, mediated by the astroglial mGluR5 receptor, regulates the functional maturation of cortical astroglia during development. These results elucidate a new mechanism for regulating the developmental formation of functional neuron-glia synaptic units.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Ratones , Ratones Transgénicos , Receptor del Glutamato Metabotropico 5/genética , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA