Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 204(Pt B): 112055, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34536372

RESUMEN

Body size descriptors and associated resemblance measurements may provide useful tools for forecasting ecological responses to increasing anthropogenic land‒use disturbances. Yet, the influences of agriculture and urbanisation on the size structure of biotic assemblages have seldom been investigated in running waters. Using a comprehensive dataset on stream macroinvertebrates from 21 river basins across Western Finland, we assessed whether the structure of assemblages via changes in taxonomic composition and body size distributions responded predictably to anthropogenic land‒use impacts. Specifically, we applied a combination of resemblance measurements based on cumulative abundance profiles and spatially constrained null models to understand faunal impairment by agricultural and urban development, and the most likely mechanisms underlying the observed shifts in assemblage size structure. Anthropogenically impacted stream sites showed less variation in assemblage composition and size distributions compared with least‒disturbed sites, with strong declines in internal variation also occurring for the transition from near‒pristine to moderately impacted landscapes. These results were consistent whether based on species‒level or genus‒level data. Variation in assemblage size structure seemed to be more predictable than taxonomic composition, supporting the notion that resemblance measurements based on body size distributions can represent an improvement to more traditional approaches based on taxonomic identities alone. In addition, we showed that macroinvertebrate assemblages resulted from effects of land‒use degradation mediated through local conditions and spurious spatial structures in the distribution of anthropogenic activities across the landscape. Overall, our findings suggest that existing water policies and agri‒environment schemes should be guided not only by understanding the individual effects of agricultural and urban development on taxonomic composition at a given stream site. Rather, we should also acknowledge the size structure of stream assemblages and whether concomitant changes in local conditions and the non‒random distribution of human infrastructures are likely to mitigate or accelerate these effects.


Asunto(s)
Efectos Antropogénicos , Invertebrados , Agricultura , Animales , Ecosistema , Monitoreo del Ambiente , Humanos , Ríos , Agua
2.
J Anim Ecol ; 90(5): 1276-1287, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33630317

RESUMEN

The occupancy and abundance of species are jointly driven by local factors, such as environmental characteristics and biotic interactions, and regional-scale factors, such as dispersal and climate. Recently, it has been shown that biotic interactions shape species occupancies and abundances beyond local extents. However, for small ectothermic animals, particularly for those occurring in freshwater environments, the importance of biotic interactions remains understudied. Species-to-species associations from joint species distribution models (i.e. species associations while controlling for environmental characteristics) are increasingly used to draw hypotheses of which species possibly show biotic interactions. We studied whether species-to-species associations from joint species distribution models show signs of competition using a hypothesis testing framework in stream macroinvertebrate communities at regional extent. We sampled aquatic macroinvertebrates from 105 stream sites in western Finland encompassing a latitudinal gradient of c. 500 kilometres. We hypothesized that if competition drives these associations (H1) functionally, similar species are mostly negatively associated, whereas functionally dissimilar species show random associations. We further hypothesized that the relationship between functional dissimilarity and the strength of association is more pronounced (H2) for abundances rather than occupancies, (H3) at small grain (i.e. stream site) rather than at large grain (i.e. river basin), and (H4) among species having weak dispersal ability than among species with high dispersal ability. Stream macroinvertebrates showed both negative and positive species-to-species associations while controlling for habitat characteristics. However, the negative associations were mostly at large grain (river basin) rather than at small grain (stream site), in occupancy rather than abundance, and not related to species functional dissimilarity or to their dispersal ability. Thus, all our hypotheses considering possible competition (H1-H4) were rejected. Competition does not appear to be a major driving force of stream macroinvertebrate communities at the spatial grain sizes considered. The observed positive associations in occupancy at small grain (stream site) may be attributed to species' similar microhabitat preferences, whereas at large grain (river basin), they may stem from metacommunity dynamics. Our results highlight that species traits were necessary to interpret whether or not species-to-species associations from joint species distribution models resulted from biotic interactions.


Asunto(s)
Invertebrados , Ríos , Animales , Ecosistema , Finlandia , Fenotipo
3.
Biol Rev Camb Philos Soc ; 96(1): 89-106, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32869448

RESUMEN

The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.


Asunto(s)
Ecosistema , Lagos , Biodiversidad
4.
Ecology ; 101(6): e03014, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068259

RESUMEN

Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which ß-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.e., ß-deviation. We found that both abundance- and incidence-based ß-diversity was negatively related to community size only in Brazil. Also, ß-diversity of small tropical communities was closer to stochastic expectations compared with ß-diversity of large communities. We suggest that ecological drift may drive variation in some small communities by changing the expected outcome of niche selection, increasing the chances of species with low abundance and narrow distribution to occur in some communities. Habitat destruction, overexploitation, pollution, and reductions in connectivity have been reducing the size of biological communities. These environmental pressures might make smaller communities more vulnerable to novel conditions and render community dynamics more unpredictable. Incorporation of community size into ecological models should provide conceptual and applied insights into a better understanding of the processes driving biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Biota , Brasil , Finlandia
5.
Sci Total Environ ; 695: 133706, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419677

RESUMEN

Sand mining is a human activity that is increasing in inland waters and has profound effects on entire aquatic ecosystems. However, current knowledge of the effects of sand mining on freshwater lake ecosystems remains limited, especially for biotic communities. Here, we investigated the responses of macroinvertebrates to indiscriminate sand mining in a large shallow lake of China. Our results indicated that sand mining significantly increased the content of suspended particulate matter, total nitrogen, total phosphorus and chlorophyll a in the water column both in the sand mining area and the area adjacent to the dredging activities. While there was significantly lower total nitrogen and the total phosphorus content of the sediment were observed in the sand mining area. In terms of benthic animals, there were reductions of the macroinvertebrate density and biomass of 89.80% and 99.54%, respectively, and there was a considerable decline of the majority of macroinvertebrate taxonomic taxa as well as biological traits observed in the sand mining area due to direct dredging-induced substrate deterioration and high turbidity water. Moreover, in the area adjacent to the dredging activities, dredging-induced high turbidity water also resulted in 28% and 79% decreases in macroinvertebrate density and biomass, respectively, with a significant decrease in the densities of Bivalvia and Polychaeta but an increase in the density of Crustacea. In terms of biological traits, species (e.g., Grandidierella sp. and Sphaerium lacustre) characterized by a small body size, short life cycle and dietary sources mainly from sediment were typically associated with the ecological condition of the indirect effects of the dredging activities. Taxa (e.g., Corbicula fluminea) with a larger body size and longer life cycle that are filter feeders should be favored by the ecological conditions of the reference sites. For biomonitoring of sand mining perturbations, a number of taxonomic and biological trait indicators were proposed in our study based on indicator value analysis, and the general applicability of trait-based indicators was highlighted. We also suggest that the biodiversity indices may be less suitable indicators of sand mining effects. Given the limited understanding of the responses of macroinvertebrates to sand mining in inland freshwaters, we believe that our results may provide important information for biomonitoring of sand mining activities and provide scientific management support to governments.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Invertebrados , Minería , Animales , Biodiversidad , China , Lagos
6.
Sci Total Environ ; 601-602: 1702-1711, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28618660

RESUMEN

Studies of aquatic metacommunities have so far been focused almost entirely on relatively isolated systems, such as a set of streams, lakes or ponds. Here, we aimed to quantify the relative importance of spatial processes, natural factors and anthropogenic stressors in structuring of a macroinvertebrate metacommunity within a large, highly-connected shallow lake system. The roles of different drivers were evaluated for the entire metacommunity, 10 trait-based deconstructed metacommunities and four common species by incorporating extensive sampling and a large number of abiotic explanatory variables. Contrary to our expectations, we found that variation in community structure among sites was mostly correlated to spatial and wind-wave variables rather than anthropogenic disturbance factors even though the lake presented strong environmental gradients associated with long-term human pressures. In addition, the relative importance of the three groups of drivers varied slightly among the deconstructed trait matrices (i.e. based on dispersal ability, feeding mode and degree of occurrence). Importantly, the distributions of the most common species showed significant and strong spatial autocorrelation, indicating the prominent role of high dispersal rate for their distributions. These findings suggest that the influences of high dispersal rates and natural disturbance may even override the roles of anthropogenic stressors in metacommunity organization in highly-connected aquatic systems. Hence, we strongly encourage that spatial processes and natural drivers are taken into account in the development of bioassessment approaches in highly-connected aquatic systems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Invertebrados , Lagos , Distribución Animal , Animales , Actividades Humanas , Análisis Espacial , Movimientos del Agua , Viento
7.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810879

RESUMEN

The spatial structure and underlying assembly mechanisms of bacterial communities have been studied widely across aquatic systems, focusing primarily on isolated sites, such as different lakes, ponds and streams. Here, our main aim was to determine the underlying mechanisms for bacterial biofilm assembly within a large, highly connected lake system in Northern Finland using associative methods based on taxonomic and phylogenetic alpha- and beta-diversity and a large number of abiotic and biotic variables. Furthermore, null model approaches were used to quantify the relative importance of different community assembly processes. We found that spatial variation in bacterial communities within the lake was structured by different assembly processes, including stochasticity, species sorting and potentially even dispersal limitation. Species sorting by abiotic environmental conditions explained more of the taxonomic and particularly phylogenetic turnover in community composition compared with that by biotic variables. Finally, we observed clear differences in alpha diversity (species richness and phylogenetic diversity), which were to a stronger extent determined by abiotic compared with biotic factors, but also by dispersal effects. In summary, our study shows that the biodiversity of bacterial biofilm communities within a lake ecosystem is driven by within-habitat gradients in abiotic conditions and by stochastic and deterministic dispersal processes.


Asunto(s)
Bacterias/clasificación , Biopelículas/clasificación , Lagos/microbiología , Consorcios Microbianos/fisiología , Ríos/microbiología , Biodiversidad , Ecosistema , Finlandia , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...