Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Comput ; 36(5): 759-780, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658025

RESUMEN

Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.


Asunto(s)
Potenciales de Acción , Generadores de Patrones Centrales , Modelos Neurológicos , Médula Espinal , Potenciales de Acción/fisiología , Generadores de Patrones Centrales/fisiología , Animales , Médula Espinal/fisiología , Neuronas/fisiología , Simulación por Computador , Redes Neurales de la Computación , Periodicidad , Red Nerviosa/fisiología , Humanos
2.
Front Neurorobot ; 17: 1332724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089147
4.
Front Neurorobot ; 16: 826410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360830

RESUMEN

Different learning modes and mechanisms allow faster and better acquisition of skills as widely studied in humans and many animals. Specific neurons, called mirror neurons, are activated in the same way whether an action is performed or simply observed. This suggests that observing others performing movements allows to reinforce our motor abilities. This implies the presence of a biological mechanism that allows creating models of others' movements and linking them to the self-model for achieving mirroring. Inspired by such ability, we propose to build a map of movements executed by a teaching agent and mirror the agent's state to the robot's configuration space. Hence, in this study, a neural network is proposed to integrate a motor cortex-like differential map transforming motor plans from task-space to joint-space motor commands and a static map correlating joint-spaces of the robot and a teaching agent. The differential map is developed based on spiking neural networks while the static map is built as a self-organizing map. The developed neural network allows the robot to mirror the actions performed by a human teaching agent to its own joint-space and the reaching skill is refined by the complementary examples provided. Hence, experiments are conducted to quantify the improvement achieved thanks to the proposed learning approach and control scheme.

5.
Int J Neural Syst ; 32(8): 2150028, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34003083

RESUMEN

While the original goal for developing robots is replacing humans in dangerous and tedious tasks, the final target shall be completely mimicking the human cognitive and motor behavior. Hence, building detailed computational models for the human brain is one of the reasonable ways to attain this. The cerebellum is one of the key players in our neural system to guarantee dexterous manipulation and coordinated movements as concluded from lesions in that region. Studies suggest that it acts as a forward model providing anticipatory corrections for the sensory signals based on observed discrepancies from the reference values. While most studies consider providing the teaching signal as error in joint-space, few studies consider the error in task-space and even fewer consider the spiking nature of the cerebellum on the cellular-level. In this study, a detailed cellular-level forward cerebellar model is developed, including modeling of Golgi and Basket cells which are usually neglected in previous studies. To preserve the biological features of the cerebellum in the developed model, a hyperparameter optimization method tunes the network accordingly. The efficiency and biological plausibility of the proposed cerebellar-based controller is then demonstrated under different robotic manipulation tasks reproducing motor behavior observed in human reaching experiments.


Asunto(s)
Modelos Neurológicos , Robótica , Cerebelo , Humanos , Neuronas , Robótica/métodos
6.
Bioinspir Biomim ; 16(3)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33706302

RESUMEN

In this work, a spiking neural network (SNN) is proposed for approximating differential sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like projection that relates changes in sensor space to changes in motor space. The SNN consists of an input (sensory) layer and an output (motor) layer connected through plastic synapses, with inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich neurons with a synaptic learning rule based on spike timing-dependent plasticity. Feedback data from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a motor babbling process. A guideline for tuning the network parameters is proposed and applied along with the particle swarm optimization technique. Our proposed control architecture takes advantage of biologically plausible tools of an SNN to achieve the target reaching task while minimizing deviations from the desired path, and consequently minimizing the execution time. Thanks to the chosen architecture and optimization of the parameters, the number of neurons and the amount of data required for training are considerably low. The SNN is capable of handling noisy sensor readings to guide the robot movements in real-time. Experimental results are presented to validate the control methodology with a vision-guided robot.


Asunto(s)
Robótica , Aprendizaje , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Neuronas/fisiología
7.
Int J Neural Syst ; 30(1): 1950028, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31771377

RESUMEN

The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate anticipatory corrections to the generation of the motor commands in spite of sensory delays and to validate the robustness of the proposed control method to input and physical dynamic changes. The outcome of the proposed architecture with other two control schemes that do not include the Smith control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of experiments confirm that the cerebellum-like circuit provides more effective corrections when only the Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible configuration are enabled.


Asunto(s)
Adaptación Fisiológica/fisiología , Anticipación Psicológica/fisiología , Cerebelo/fisiología , Aprendizaje/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Humanos
8.
Front Neurorobot ; 13: 70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555117

RESUMEN

One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions. Different biologically plausible cerebellar models are available in literature and have been employed for motor learning and control of simplified objects. We built the canonical cerebellar microcircuit by combining machine learning and computational neuroscience techniques. The control system is composed of the adaptive cerebellar module and a classic control method; their combination allows a fast adaptive learning and robust control of the robotic movements when external disturbances appear. The control structure is built offline, but the dynamic parameters are learned during an online-phase training. The aforementioned adaptive control system has been tested in the Neuro-robotics Platform with the virtual humanoid robot iCub. In the experiment, the robot iCub has to balance with the hand a table with a ball running on it. In contrast with previous attempts of solving this task, the proposed neural controller resulted able to quickly adapt when the internal and external conditions change. Our bio-inspired and flexible control architecture can be applied to different robotic configurations without an excessive tuning of the parameters or customization. The cerebellum-based control system is indeed able to deal with changing dynamics and interactions with the environment. Important insights regarding the relationship between the bio-inspired control system functioning and the complexity of the task to be performed are obtained.

9.
Front Neurorobot ; 13: 71, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555118

RESUMEN

In traditional robotics, model-based controllers are usually needed in order to bring a robotic plant to the next desired state, but they present critical issues when the dimensionality of the control problem increases and disturbances from the external environment affect the system behavior, in particular during locomotion tasks. It is generally accepted that the motion control of quadruped animals is performed by neural circuits located in the spinal cord that act as a Central Pattern Generator and can generate appropriate locomotion patterns. This is thought to be the result of evolutionary processes that have optimized this network. On top of this, fine motor control is learned during the lifetime of the animal thanks to the plastic connections of the cerebellum that provide descending corrective inputs. This research aims at understanding and identifying the possible advantages of using learning during an evolution-inspired optimization for finding the best locomotion patterns in a robotic locomotion task. Accordingly, we propose a comparative study between two bio-inspired control architectures for quadruped legged robots where learning takes place either during the evolutionary search or only after that. The evolutionary process is carried out in a simulated environment, on a quadruped legged robot. To verify the possibility of overcoming the reality gap, the performance of both systems has been analyzed by changing the robot dynamics and its interaction with the external environment. Results show better performance metrics for the robotic agent whose locomotion method has been discovered by applying the adaptive module during the evolutionary exploration for the locomotion trajectories. Even when the motion dynamics and the interaction with the environment is altered, the locomotion patterns found on the learning robotic system are more stable, both in the joint and in the task space.

10.
Bioinspir Biomim ; 12(6): 065001, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28795949

RESUMEN

Gaze stabilization is essential for clear vision; it is the combined effect of two reflexes relying on vestibular inputs: the vestibulocollic reflex (VCR), which stabilizes the head in space and the vestibulo-ocular reflex (VOR), which stabilizes the visual axis to minimize retinal image motion. The VOR works in conjunction with the opto-kinetic reflex (OKR), which is a visual feedback mechanism that allows the eye to move at the same speed as the observed scene. Together they keep the image stationary on the retina. In this work, we implement on a humanoid robot a model of gaze stabilization based on the coordination of VCR, VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot and on the iCub simulator, validating the robustness of the proposed control method. The first set of experiments focused on the controller response to a set of disturbance frequencies along the vertical plane. The second shows the performances of the system under three-dimensional disturbances. The last set of experiments was carried out to test the capability of the proposed model to stabilize the gaze in locomotion tasks. The results confirm that the proposed model is beneficial in all cases reducing the retinal slip (velocity of the image on the retina) and keeping the orientation of the head stable.


Asunto(s)
Cerebelo/fisiología , Fijación Ocular , Adaptación Fisiológica , Animales , Humanos , Aprendizaje , Reflejo Vestibuloocular , Robótica
11.
Int J Neural Syst ; 26(5): 1650020, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27079422

RESUMEN

The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.


Asunto(s)
Potenciales de Acción/fisiología , Interneuronas/fisiología , Modelos Neurológicos , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Periodicidad , Algoritmos , Animales , Encéfalo/fisiología , Homeostasis/fisiología , Teoría de la Información , Aprendizaje/fisiología , Reconocimiento de Normas Patrones Automatizadas , Patrones de Reconocimiento Fisiológico , Sinapsis/fisiología , Ritmo Teta/fisiología
12.
Int J Neural Syst ; 23(3): 1350010, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23627657

RESUMEN

In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).


Asunto(s)
Brazo , Simulación por Computador , Modelos Neurológicos , Movimiento/fisiología , Neuronas/fisiología , Robótica , Adaptación Fisiológica , Algoritmos , Inteligencia Artificial , Cerebelo/citología , Retroalimentación , Humanos , Valor Predictivo de las Pruebas
13.
Biol Cybern ; 106(8-9): 507-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22907270

RESUMEN

This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).


Asunto(s)
Retroalimentación , Modelos Neurológicos , Robótica/métodos , Inteligencia Artificial
14.
Biosystems ; 94(1-2): 10-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18616981

RESUMEN

Around half of the neurons of a human brain are granule cells (approximately 10(11)granule neurons) [Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural Science. McGraw-Hill Professional Publishing, New York]. In order to study in detail the functional role of the intrinsic features of this cell we have developed a pre-compiled behavioural model based on the simplified granule-cell model of Bezzi et al. [Bezzi, M., Nieus, T., Arleo, A., D'Angelo, E., Coenen, O.J.-M.D., 2004. Information transfer at the mossy fiber-granule cell synapse of the cerebellum. 34th Annual Meeting. Society for Neuroscience, San Diego, CA, USA]. We can use an efficient event-driven simulation scheme based on lookup tables (EDLUT) [Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, B., Ags, R., 2006. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation 18 (12), 2959-2993]. For this purpose it is necessary to compile into tables the data obtained through a massive numerical calculation of the simplified cell model. This allows network simulations requiring minimal numerical calculation. There are three major features that are considered functionally relevant in the simplified granule cell model: bursting, subthreshold oscillations and resonance. In this work we describe how the cell model is compiled into tables keeping these key properties of the neuron model.


Asunto(s)
Cerebelo/citología , Biología Computacional/métodos , Modelos Biológicos , Red Nerviosa , Neuronas/fisiología , Transmisión Sináptica/fisiología , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...