Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071571

RESUMEN

In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.

2.
Future Med Chem ; 11(12): 1387-1401, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31298576

RESUMEN

Aim: Fragment-based drug design or bioisosteric replacement is used to find new actives with low (or no) similarity to existing ones but requires the synthesis of nonexisting compounds to prove their predicted bioactivity. Protein-ligand docking or pharmacophore screening are alternatives but they can become computationally expensive when applied to very large databases such as ZINC. Therefore, fast strategies are necessary to find new leads in such databases. Materials & methods: We designed a computational strategy to find lead molecules with very low (or no) similarity to existing actives and applied it to DPP-IV. Results: The bioactivity assays confirm that this strategy finds new leads for DPP-IV inhibitors. Conclusion: This computational strategy reduces the time of finding new lead molecules.


Asunto(s)
Química Computacional/métodos , Bases de Datos de Compuestos Químicos , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV , Diseño de Fármacos , Animales , Sitios de Unión , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Humanos , Riñón/enzimología , Ligandos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Porcinos
3.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893780

RESUMEN

Virtual screening consists of using computational tools to predict potentially bioactive compounds from files containing large libraries of small molecules. Virtual screening is becoming increasingly popular in the field of drug discovery as in silico techniques are continuously being developed, improved, and made available. As most of these techniques are easy to use, both private and public organizations apply virtual screening methodologies to save resources in the laboratory. However, it is often the case that the techniques implemented in virtual screening workflows are restricted to those that the research team knows. Moreover, although the software is often easy to use, each methodology has a series of drawbacks that should be avoided so that false results or artifacts are not produced. Here, we review the most common methodologies used in virtual screening workflows in order to both introduce the inexperienced researcher to new methodologies and advise the experienced researcher on how to prevent common mistakes and the improper usage of virtual screening methodologies.


Asunto(s)
Evaluación Preclínica de Medicamentos , Interfaz Usuario-Computador , Ligandos , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados , Programas Informáticos
4.
J Agric Food Chem ; 66(42): 10952-10963, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30269491

RESUMEN

Metabolic syndrome is a cluster of medical conditions that increases the risk of developing cardiovascular disease and type 2 diabetes. Numerous studies have shown that inflammation is directly involved in the onset of metabolic syndrome and related pathologies. In this study, in silico techniques were applied to a natural products database containing molecules isolated from mushrooms from the Catalan forests to predict molecules that can act as human nuclear-factor κß kinase 2 (IKK-2) inhibitors. IKK-2 is the main component responsible for activating the nuclear-factor κß transcription factor (NF-κß). One of these predicted molecules was o-orsellinaldehyde, a molecule present in the mushroom Grifola frondosa. This study shows that o-orsellinaldehyde presents anti-inflammatory and pro-apoptotic properties by acting as IKK-2 inhibitor. Additionally, we suggest that the anti-inflammatory and pro-apoptotic properties of Grifola frondosa mushroom could partially be explained by the presence of o-orsellinaldehyde on its composition.


Asunto(s)
Aldehídos/química , Antiinflamatorios/química , Catecoles/química , Grifola/química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Aldehídos/metabolismo , Aldehídos/uso terapéutico , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/metabolismo , Catecoles/metabolismo , Catecoles/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Bases de Datos de Compuestos Químicos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Quinasa de Factor Nuclear kappa B
5.
ChemMedChem ; 13(18): 1939-1948, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30024103

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is a potential drug target for diabetes and obesity. However, the design of PTP1B inhibitors that combine potency and bioavailability is a great challenge, and new leads are needed to circumvent this problem. Virtual screening (VS) workflows can be used to find new PTP1B inhibitors with little chemical similarity to existing inhibitors. Unfortunately, previous VS workflows for the identification of PTP1B inhibitors have several limitations, such as a small number of experimentally tested compounds and the low bioactivity of those compounds. We developed a VS workflow capable of identifying 15 structurally diverse PTP1B inhibitors from 20 compounds, the bioactivity of which was tested in vitro. Moreover, we identified two PTP1B inhibitors with the highest bioactivity reported by any VS campaign (i.e., IC50 values of 1.4 and 2.1 µm), which could be used as new lead compounds.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
6.
Food Chem Toxicol ; 115: 398-404, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29604305

RESUMEN

The present study was aimed at assessing the impact of AgNPs on the liver of male rats orally exposed to 0, 50, 100 and 200 mg/kg/day of polyvinyl pyrrolidone coated AgNPs (PVP-AgNPs) for 90 days. The induction of apoptotic cell death -by measuring the protein levels of the active form of caspase 3- and the levels of the microtubule-associated protein 1A/1B-light chain (LC3) protein were measured as a marker of the induction of autophagy. PVP-AgNPs caused an increase of the activity of superoxide dismutase (SOD) and catalase (CAT) in the liver of male rats. However, the activity decreased after exposure to high amounts of PVP-AgNPs. Increased protein levels of IRS-1, AKT, GSK3ß and mTOR proteins were observed in a dose-dependent manner. However, these proteins showed a decrease at 200 mg/kg/day. The same pattern was observed for the p53, p21 and cleaved caspase 3 protein levels. The current results suggest that the increase of ROS production by PVP-AgNPs stimulated SOD and CAT activity, as well as IRS-1, AKT, mTOR, p53, p21 and caspase 3 as protective mechanisms of cell survival and preserve DNA fidelity. However, cellular damage by excessive ROS production might induce the depletion of these survival mechanisms at 200 mg/kg/day.


Asunto(s)
Caspasa 3/metabolismo , Insulina/metabolismo , Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Plata/química , Proteína p53 Supresora de Tumor/metabolismo , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Autofagia , Biomarcadores/metabolismo , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Hidrólisis , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Masculino , Nanopartículas del Metal/química , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
7.
Med Res Rev ; 38(6): 1874-1915, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29660786

RESUMEN

The inhibition of dipeptidyl peptidase-IV (DPP-IV) has emerged over the last decade as one of the most effective treatments for type 2 diabetes mellitus, and consequently (a) 11 DPP-IV inhibitors have been on the market since 2006 (three in 2015), and (b) 74 noncovalent complexes involving human DPP-IV and drug-like inhibitors are available at the Protein Data Bank (PDB). The present review aims to (a) explain the most important activity cliffs for DPP-IV noncovalent inhibition according to the binding site structure of DPP-IV, (b) explain the most important selectivity cliffs for DPP-IV noncovalent inhibition in comparison with other related enzymes (i.e., DPP8 and DPP9), and (c) use the information deriving from this activity/selectivity cliff analysis to suggest how virtual screening protocols might be improved to favor the early identification of potent and selective DPP-IV inhibitors in molecular databases (because they have not succeeded in identifying selective DPP-IV inhibitors with IC50 ≤ 100 nM). All these goals are achieved with the help of available homology models for DPP8 and DPP9 and an analysis of the structure-activity studies used to develop the noncovalent inhibitors that form part of some of the complexes with human DPP-IV available at the PDB.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Evaluación Preclínica de Medicamentos , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/análisis , Humanos , Relación Estructura-Actividad
8.
Mol Nutr Food Res ; 62(5)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29336118

RESUMEN

SCOPE: Resveratrol (RSV) has been described as a potent antioxidant, antisteatotic, and antitumor compound, and it has also been identified as a potent autophagy inducer. On the other hand, quercetin (QCT) is a dietary flavonoid with known antitumor, anti-inflammatory, and antidiabetic effects. Additionally, QCT increases autophagy. To study the hypothetical synergistic effect of both compounds, we test the combined effect of QCT and RSV on the autophagy process in HepG2 cells. METHODS AND RESULTS: Autophagy is studied by western blotting, real-time RT-PCR, and cellular staining. Our results clearly indicate a bifunctional molecular effect of RSV. Both polyphenols are individually able to promote autophagy. Strikingly, when RSV is combined with QCT, it promotes a potent reduction of QCT-induced autophagy and influences proapoptotic signaling. CONCLUSION: RSV acts differentially on the autophagic process depending on the cellular energetic state. We further characterize the molecular mechanisms related to this effect, and we observe that AMP-activated protein kinase (AMPK) phosphorylation, heme oxygenase 1 (HO-1) downregulation, lysosomal membrane permeabilization (LMP), and Zinc (Zn2+ ) dynamics could be important modulators of such RSV-related effects and could globally represent a promising strategy to sensitize cancer cells to QCT treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Quercetina/farmacología , Resveratrol/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Células Hep G2 , Humanos , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Zinc/farmacología
9.
Future Med Chem ; 9(18): 2129-2146, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29172693

RESUMEN

AIM: Extracts from Ephedra species have been reported to be effective as antidiabetics. A previous in silico study predicted that ephedrine and five ephedrine derivatives could contribute to the described antidiabetic effect of Ephedra extracts by inhibiting dipeptidyl peptidase IV (DPP-IV). Finding selective DPP-IV inhibitors is a current therapeutic strategy for Type 2 diabetes mellitus management. Therefore, the main aim of this work is to experimentally determine whether these alkaloids are DPP-IV inhibitors. Materials & methods: The DPP-IV inhibition of Ephedra's alkaloids was determined via a competitive-binding assay. Then, computational analyses were used in order to find out the protein-ligand interactions and to perform a lead optimization. RESULTS: Our results show that all six molecules are DPP-IV inhibitors, with IC50 ranging from 124 µM for ephedrine to 28 mM for N-methylpseudoephedrine. CONCLUSION: Further computational analysis shows how Ephedra's alkaloids could be used as promising lead molecules for designing more potent and selective DPP-IV inhibitors.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Efedrina/análogos & derivados , Hipoglucemiantes/química , Alcaloides/química , Alcaloides/metabolismo , Sitios de Unión , Unión Competitiva , Dipeptidil Peptidasa 4/química , Diseño de Fármacos , Ephedra/química , Ephedra/metabolismo , Efedrina/metabolismo , Hipoglucemiantes/metabolismo , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Fenilpropanolamina/química , Extractos Vegetales/química , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Estereoisomerismo , Relación Estructura-Actividad
10.
J Med Chem ; 58(14): 5381-94, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25734377

RESUMEN

Thiazolidinediones (TZDs), such as rosiglitazone and pioglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) full agonists that have been widely used in the treatment of type 2 diabetes mellitus. Despite the demonstrated beneficial effect of reducing glucose levels in the plasma, TZDs also induce several adverse effects. Consequently, the search for new compounds with potent antidiabetic effects but fewer undesired effects is an active field of research. Interestingly, the novel proposed mechanisms for the antidiabetic activity of PPARγ agonists, consisting of PPARγ Ser273 phosphorylation inhibition, ligand and receptor mutual dynamics, and the presence of an alternate binding site, have recently changed the view regarding the optimal characteristics for the screening of novel PPARγ ligands. Furthermore, transcriptional genomics could bring essential information about the genome-wide effects of PPARγ ligands. Consequently, facing the new mechanistic scenario proposed for these compounds is essential for resolving the paradoxes among their agonistic function, antidiabetic activities, and side effects and should allow the rational development of better and safer PPARγ-mediated antidiabetic drugs.


Asunto(s)
PPAR gamma/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ligandos , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , PPAR gamma/química , Fosforilación/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...