Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Vet Anim Res ; 10(3): 522-537, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37969792

RESUMEN

Probiotics are live bacteria beneficial to health when consumed adequately. Health professionals now recommend probiotics on regular diets due to their positive effects on human health. The probiotics that are usually consumed from the market through food products are mostly dairy-based. Fruit and vegetables are gaining popularity as preferred matrices for probiotic carriers to the human body, owing to their high cholesterol content and the lactose intolerance of dairy products. On the other hand, fruits and vegetable juices are rich in nutrient content such as vitamins, minerals, and antioxidants and do not contain a starter culture that can compete with the nutrients. The probiotication of fruit and vegetable juices (apple, carrot, citrus fruit, pome-granate, watermelon, tomato, and pineapple) are performing as efficient probiotic bacteria carriers. This review covers the previous works that highlighted the variety of probiotic fruit and vegetable juices as well as the viability of each probiotic in various products after proper fermentation and storage. In addition, physicochemical and sensory changes that occurred during the processing and storage period have been discussed. Furthermore, strategies (microencapsulation, adding prebiotics, antioxidant addition, maintaining optimum pH, temperature, adaptation with resistance, and good packaging) to improve the stability of probiotic bacteria are outlined, as it is difficult to maintain the stability of probiotic bacteria during storage. Finally, the manuscript discusses the effect of probiotic fruit and vegetable juices on human health.

2.
Foods ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205202

RESUMEN

Natural colorants have been used in several ways throughout human history, such as in food, dyes, pharmaceuticals, cosmetics, and many other products. The study aimed to isolate the natural colorant-producing filamentous fungi Aspergillus niger from soil and extract pigments for its potential use specially for food production. Fourteen soil samples were collected from Madhupur National Park at Madhupur Upazila in the Mymensingh district, Bangladesh. The Aspergillus niger was isolated and identified from the soil samples by following conventional mycological methods (cultural and morphological characteristics), followed by confirmatory identification by a polymerase chain reaction (PCR) of conserved sequences of ITS1 ribosomal DNA using specific oligonucleotide primers. This was followed by genus- and species-specific primers targeting Aspergillus niger with an amplicon size of 521 and 310 bp, respectively. For pigment production, a mass culture of Aspergillus niger was conducted in Sabouraud dextrose broth in shaking conditions for seven days. The biomass was subjected to extraction of the pigments following an ethanol-based extraction method and concentrated using a rotary evaporator. Aspergillus niger could be isolated from three samples. The yield of extracted brown pigment from Aspergillus niger was 0.75% (w/v). Spectroscopic analysis of the pigments was carried out using a UV-VIS spectrophotometer. An in vivo experiment was conducted with mice to assess the toxicity of the pigments. From the colorimetric and sensory evaluations, pigment-supplemented products (cookies and lemon juice) were found to be more acceptable than the control products. This could be the first attempt to use Aspergillus niger extracted pigment from soil samples in food products in Bangladesh, but for successful food production, the food colorants must be approved by a responsible authority, e.g., the FDA or the BSTI. Moreover, fungal pigments could be used in the emerging fields of the food and textile industries in Bangladesh.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA