Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(11): 5617-5631, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051761

RESUMEN

Due to gradual environmental changes like ozone layer depletion and global warming, human eyes are exposed to UV light. Exposure to UV light can be a cause of cataracts, one of the ocular diseases that may cause vision impairment. To date, lens replacement has been the only treatment available for cataracts. In our present study, we carried out an extensive examination of polyphenols as inhibitors for UV-induced aggregation of γD-crystallin. On exposure to UV-C light, γD-crystallin forms fibrils instead of amorphous aggregates. Various polyphenols were tested as inhibitors; out of them, quercetin, baicalein, and caffeic acid were found to be effective. As polyphenols are insoluble in water, nanoencapsulation was used to enhance their bioavailability. CS-TPP and CS-PLGA encapsulating systems were considered, as they form biodegradable nanocapsules. Out of three polyphenols (quercetin, baicalein, and caffeic acid), quercetin forms nanocarriers of smaller sizes, a must for crossing the retinal barrier. Quercetin nanocarriers were considered an effective system that could be used for therapeutic applications. For these nanocarriers, encapsulation efficiency and polyphenol release kinetics were studied. CS-PLGA NPs were found to have a better loading efficiency for quercetin than CS-TPP NPs.


Asunto(s)
Ácidos Cafeicos , Catarata , gamma-Cristalinas , Humanos , Rayos Ultravioleta , Quercetina
2.
Phys Chem Chem Phys ; 25(34): 23081-23091, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602388

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease commonly caused due to the aggregation of superoxide dismutase 1 (SOD1) protein. Finding inhibitors of SOD1 aggregation is of prime concern, but understanding the mechanistic action of inhibitors is equally important. Recent experiments found that two polyphenols, curcumin, and quercetin, have the ability to inhibit SOD1 aggregation. Quercetin was experimentally proven to break pre-formed fibrils into shorter segments, while curcumin did not significantly affect the pre-formed species. Here, we delve deeper into understanding the mechanism of action of quercetin and curcumin on pre-formed octameric fibrils of SOD1 (28PVKVWGSIKGL38: chains A-H) with the help of molecular dynamics (MD) simulations of a fibril docked polyphenol complex. Our results suggest that quercetin shows π-π stacking interaction with one of the key residues for toxic amyloid formation, Trp 32 of chains D, E, and F, and breaks the peptide chains G, and H from the rest of the fibril. On the other hand, curcumin binds to the hydrophobic amino acids of almost all the chains B-H and stabilizes the fibril rather than destabilizing it. Binding free energy calculations using MM/PBSA showed that curcumin binds more strongly to the SOD1 fibril due to greater van der Waals interactions compared to quercetin. These findings provide insights for the development of potential ALS treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral , Curcumina , Enfermedades Neurodegenerativas , Humanos , Curcumina/farmacología , Quercetina/farmacología , Superóxido Dismutasa-1 , Polifenoles
3.
ACS Chem Neurosci ; 14(13): 2461-2475, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37314311

RESUMEN

Amyotrophic lateral sclerosis (ALS) is believed to be caused by the aggregation of misfolded or mutated superoxide dismutase 1 (SOD1). As there is currently no treatment, research into aggregation inhibitors continues. Based on docking, molecular dynamics (MD) simulations, and experimental observations, we propose that myricetin, a plant flavonoid, can act as a potent anti-amyloidogenic polyphenol against SOD1 aggregation. Our MD simulation results showed that myricetin stabilizes the protein interface, destabilizes the preformed fibril, and decreases the rate of fibril elongation. Myricetin inhibits the aggregation of SOD1 in a dose-dependent manner as shown by the ThT aggregation kinetics curves. Our transmission electron microscopy, dynamic light scattering, and circular dichroism experiments indicate that fewer shorter fibrils have formed. Fluorescence spectroscopy results predict the involvement of a static quenching mechanism characterized by a strong binding between protein and myricetin. Importantly, size exclusion chromatography revealed the potential of myricetin for fibril destabilization and depolymerization. These experimental observations complement the MD results. Thus, myricetin is a potent SOD1 aggregation inhibitor that can reduce the fibril load. Using the structure of myricetin as a reference, it is possible to design more effective therapeutic inhibitors against ALS that prevent the disease and reverse its effects.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Polifenoles/farmacología , Flavonoides/farmacología , Superóxido Dismutasa/metabolismo , Mutación
4.
Phys Chem Chem Phys ; 25(8): 6232-6246, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36756854

RESUMEN

Pathology of superoxide dismutase 1 (SOD1) aggregation is linked to a neurodegenerative disease known as amyotrophic lateral sclerosis (ALS). Without suitable post-translational modifications (PTMs), the protein structure tends to become aggregation-prone. Understanding the role of PTMs and targeting the aggregation-prone SOD1 with small molecules can be used to design a strategy to inhibit its aggregation. Microsecond long molecular dynamics (MD) simulations followed by free energy surface (FES) analyses show that the loss of structure in the apo monomer happens locally and stepwise. Removing the disulfide bond from apoprotein leads to further instability in the zinc-binding loop, giving rise to non-native protein conformations. Further, it was found that these non-native conformations have a higher propensity to form a non-native dimer. We chose three structurally similar polyphenols based on their binding energies and investigated their impact on SOD1 aggregation kinetics. MD simulations of apo-SOD1SH/corkscrew fibril-polyphenol complexes were also carried out. The effect of polyphenols was seen on fibril elongation as well. Based on the experiments and MD simulation results, it can be inferred that the choice of inhibitors is influenced not only by the binding energy but also by dimer interface stabilization, the proclivity to form non-native dimers, the propensity to break fibrils, and the propensity to decrease the rate of elongation. The polyphenols with 3' and 4' hydroxyl groups are better inhibitors of SOD1 aggregation.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Amiloide/química , Conformación Proteica , Proteínas Amiloidogénicas , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA