Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(38): e202400594, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38712990

RESUMEN

This study delves into the early aggregation process of the Aß1-40 amyloid peptide, elucidating the associated oligomers distribution. Motivated by the acknowledged role of small oligomers in the neurotoxic damage linked to Alzheimer's disease, we present an experimental protocol for preparing 26-O-acyl isoAß1-40, a modified Aß1-40 peptide facilitating rapid isomerization to the native amide form at neutral pH. This ensures seed-free solutions, minimizing experimental variability. Additionally, we demonstrate the efficacy of coupling NMR diffusion ordered spectroscopy (DOSY) with the Inverse Laplace Transform (ILT) reconstruction method, for effective characterization of early aggregation processes. This innovative approach efficiently maps oligomers distributions across a wide spectrum of initial peptide concentrations offering unique insights into the evolution of oligomers relative populations. As a proof of concept, we demonstrate the efficacy of our approach assessing the impact of Epigallocathechin gallate, a known remodeling agent of amyloid fibrils, on the oligomeric distributions of aggregated Aß1-40. The DOSY-ILT proposed approach stands as a robust and discriminating asset, providing a powerful strategy for rapidly gaining insight into potential inhibitors' impact on the aggregation process.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Catequina/química , Catequina/análogos & derivados , Agregado de Proteínas , Humanos , Enfermedad de Alzheimer/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Amiloide/química , Amiloide/metabolismo
2.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006146

RESUMEN

Bio-polyols (BPOs), characterized by a hydroxyl number up to around 90 mg KOH/g, narrow polydispersity index and relatively low molecular mass up to 2000 g/mol, were synthetized from partially and completely epoxidized soybean and linseed oils and caprylic acid or 3-phenyl butyric acid. These BPOs were used in the presence of toluene diisocyanate to produce polyurethane (PU) foams by using a quasi-prepolymer method involving a two-step reaction. A detailed structural investigation of the prepolymers from toluene diisocyanate and both BPOs and polypropylene glycol was conducted by SEC and solution NMR. The apparent density of the foams was in the range of 40-90 kg/m3, with higher values for foams from the aromatic acid. All the foams showed an open-cell structure with uniform and regular shape and uniform size. The specific Young's moduli and compression deflection values suggest superior mechanical properties than the reference foams. The novel synthesized polyurethanes are excellent candidates to partially replace petroleum-based materials.

3.
Molecules ; 28(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36838954

RESUMEN

Water-blown polyurethane (PU) foams were prepared by bio-polyols from epoxidized linseed oils and caprylic acid in combination with toluene diisocianate (TDI). A series of terpenes (menthol, geraniol, terpineol, and borneol), natural compounds with recognized antibacterial properties, were included in the starting formulations to confer bactericidal properties to the final material. Foams additivated with Irgasan®, a broad-spectrum antimicrobial molecule, were prepared as reference. The bactericidal activity of foams against planktonic and sessile E. coli (ATCC 11229) and S. aureus (ATCC 6538) was evaluated following a modified AATCC 100-2012 static method. Menthol-additivated foams showed broad-spectrum antibacterial activity, reducing Gram+ and Gram- viability by more than 60%. Foams prepared with borneol and terpineol showed selective antibacterial activity against E. coli and S. aureus, respectively. NMR analysis of foams leaking in water supported a bactericidal mechanism mediated by contact killing rather than molecule release. The results represent the proof of concept of the possibility to develop bio-based PU foams with intrinsic bactericidal properties through a simple and innovative synthetic approach.


Asunto(s)
Aceites Volátiles , Terpenos , Poliuretanos/química , Mentol , Staphylococcus aureus , Escherichia coli , Antibacterianos/química , Agua
4.
Biochim Biophys Acta Gen Subj ; 1867(1): 130253, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228877

RESUMEN

BACKGROUND: Cells exposed to stress factors experience time-dependent variations of metabolite concentration, acting as reliable sensors of the effective concentration of drugs in solution. NMR can detect and quantify changes in metabolite concentration, thus providing an indirect estimate of drug concentration. The quantification of bactericidal molecules released from antimicrobial-treated biomedical materials is crucial to determine their biocompatibility and the potential onset of drug resistance. METHODS: Real-time NMR measurements of extracellular metabolites produced by bacteria grown in the presence of known concentrations of an antibacterial molecule (irgasan) are employed to quantify the bactericidal molecule released from antimicrobial-treated biomedical devices. Viability tests assess their activity against E. coli and S. aureus planktonic and sessile cells. AFM and contact angle measurements assisted in the determination of the mechanism of antibacterial action. RESULTS: NMR-derived concentration kinetics of metabolites produced by bacteria grown in contact with functionalized materials allows for indirectly evaluating the effective concentration of toxic substances released from the device, lowering the detection limit to the nanomolar range. NMR, AFM and contact angle measurements support a surface-killing mechanism of action against bacteria. CONCLUSIONS: The NMR based approach provides a reliable tool to estimate bactericidal molecule release from antimicrobial materials. GENERAL SIGNIFICANCE: The novelty of the proposed NMR-based strategy is that it i) exploits bacteria as sensors of the presence of bactericidal molecules in solution; ii) is independent of the chemo-physical properties of the analyte; iii) establishes the detection limit to nanomolar concentrations.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Antiinfecciosos/farmacología
5.
Chembiochem ; 22(1): 160-169, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32975328

RESUMEN

Fibroblast growth factor (FGF2)/fibroblast growth factor receptor (FGFR) signalling plays a major role both in physiology and in several pathologies, including cancer development, metastasis formation and resistance to therapy. The development of small molecules, acting extracellularly to target FGF2/FGFR interactions, has the advantage of limiting the adverse effects associated with current intracellular FGFR inhibitors. Herein, we discuss the ability of the natural compound rosmarinic acid (RA) to induce FGF2/FGFR complex dissociation. The molecular-level description of the FGF2/FGFR/RA system, by NMR spectroscopy and docking, clearly demonstrates that RA binds to the FGFR-D2 domain and directly competes with FGF2 for the same binding site. Direct and allosteric perturbations combine to destabilise the complex. The proposed molecular mechanism is validated by cellular studies showing that RA inhibits FGF2-induced endothelial cell proliferation and FGFR activation. Our results can serve as the basis for the development of new extracellular inhibitors of the FGF/FGFR pathways.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Productos Biológicos/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Inhibidores de la Angiogénesis/química , Animales , Productos Biológicos/química , Bovinos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cinamatos/química , Depsidos/química , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/química , Ácido Rosmarínico
6.
Front Neurosci ; 14: 619667, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414705

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-ß (Aß) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aß oligomers and to the deposition of ß-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aß aggregation by direct interaction with Aß peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aß regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and ß1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.

7.
ACS Chem Neurosci ; 10(11): 4462-4475, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31603646

RESUMEN

In this study natural-based complex polyphenols, obtained through a smart synthetic approach, have been evaluated for their ability to inhibit the formation of Aß42 oligomers, the most toxic species causing synaptic dysfunction, neuroinflammation, and neuronal death leading to the onset and progression of Alzheimer's disease. In vitro neurotoxicity tests on primary hippocampal neurons have been employed to select nontoxic candidates. Solution NMR and molecular docking studies have been performed to clarify the interaction mechanism of Aß42 with the synthesized polyphenol derivatives, and highlight the sterical and chemical requirements important for their antiaggregating activity. NMR results indicated that the selected polyphenolic compounds target Aß42 oligomeric species. Combined NMR and docking studies indicated that the Aß42 central hydrophobic core, namely, the 17-31 region, is the main interaction site. The length of the peptidomimetic scaffold and the presence of a guaiacol moiety were identified as important requirements for the antiaggregating activity. In vivo experiments on an Aß42 oligomer-induced acute mouse model highlighted that the most promising polyphenolic derivative (PP04) inhibits detrimental effects of Aß42 oligomers on memory and glial cell activation. NMR kinetic studies showed that PP04 is endowed with the chemical features of true inhibitors, strongly affecting both the Aß42 nucleation and growth rates, thus representing a promising candidate to be further developed into an effective drug against neurodegenerative diseases of the amyloid type.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Modelos Animales de Enfermedad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Fragmentos de Péptidos/toxicidad , Polifenoles/uso terapéutico , Enfermedad Aguda , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Animales , Células Cultivadas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular/métodos , Fragmentos de Péptidos/química , Polifenoles/química , Estructura Secundaria de Proteína
8.
Mol Neurobiol ; 56(3): 1957-1971, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29981054

RESUMEN

Soluble Aß oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aß receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aß oligomers. The interactions of PrP with both Aß42 and the highly toxic N-truncated pyroglutamylated species (AßpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aß42 and AßpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aß42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aß42 sample. A distinct behavior is observed for Aß42 1-30 region and C-terminal residues, suggesting that PrP protects Aß42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aß42 N-tail is the locus of interaction with PrP. PrP/AßpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aß oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aß oligomers bears relevance for studies of druggable pathways.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular/fisiología , Espectroscopía de Resonancia Magnética , Ratones , Unión Proteica
9.
ACS Chem Neurosci ; 8(4): 759-765, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28135060

RESUMEN

Aß peptides, the main protein components of Alzheimer's disease (AD) plaques, derive from a proteolytic cleavage of the amyloid precursor protein. Due to heterogeneous cleavage sites, a series of Aß peptides, including the major and widely studied species Aß1-40 (Aß40) and Aß1-42 (Aß42), are produced. In addition to the C-terminal heterogeneity of Aß peptides, significant amounts of N-terminal truncated (Aß3-42) and pyroglutamate-modified amyloid-ß peptides (AßpE3-42) have been identified in AD affected brains and shown to be more cytotoxic than unmodified Aß peptides. Little is known about the properties of their mixtures with Aß42. Nuclear Magnetic Resonance spectroscopy is here employed to investigate the interaction of N-truncated peptides with Aß42 at different molar ratios. We highlight the critical concentration of N-truncated forms influencing the aggregation kinetics of Aß42. We provide evidence, at residue level, that the C-terminal region of Aß42 is the locus of transient specific interactions with highly aggregation prone N-truncated alloforms.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Humanos , Espectroscopía de Resonancia Magnética
10.
Macromol Biosci ; 17(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27805768

RESUMEN

Electrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo. Solution NMR studies, employed to provide molecular information on the cargo system, points to a micromolar affinity, compatible with both the electrospinning process and slow guest release. The versatility of the carrier protein, capable of interacting with a variety of druggable hydrophobic molecules, is exploitable for the development of innovative biomedical devices, whose properties can be tuned by the selected guest.


Asunto(s)
Antibacterianos/farmacología , Proteínas Portadoras/metabolismo , Lípidos/química , Glicoproteínas de Membrana/metabolismo , Nanofibras/química , Nanotecnología/métodos , Animales , Carbanilidas/farmacología , Pollos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanofibras/ultraestructura , Espectroscopía de Protones por Resonancia Magnética , Ovinos , Soluciones , Staphylococcus aureus/efectos de los fármacos , Humectabilidad
11.
Biochim Biophys Acta Proteins Proteom ; 1864(1): 102-14, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-25936778

RESUMEN

The rapid development of novel nanoscale materials for applications in biomedicine urges an improved characterization of the nanobio interfaces. Nanoparticles exhibit unique structures and properties, often different from the corresponding bulk materials, and the nature of their interactions with biological systems remains poorly characterized. Solution NMR spectroscopy is a mature technique for the investigation of biomolecular structure, dynamics, and intermolecular associations, however its use in protein-nanoparticle interaction studies remains scarce and highly challenging, particularly due to unfavorable hydrodynamic properties of most nanoscale assemblies. Nonetheless, recent efforts demonstrated that a number of NMR observables, such as chemical shifts, signal intensities, amide exchange rates and relaxation parameters, together with newly designed saturation transfer experiments, could be successfully employed to characterize the orientation, structure and dynamics of proteins adsorbed onto nanoparticle surfaces. This review provides the first survey and critical assessment of the contributions from solution NMR spectroscopy to the study of transient interactions between proteins and both inorganic (gold, silver, and silica) and organic (polymer, carbon and lipid based) nanoparticles. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.


Asunto(s)
Nanopartículas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Estructura Terciaria de Proteína , Proteínas/química , Medición de Intercambio de Deuterio/métodos , Cinética , Modelos Químicos , Modelos Moleculares , Unión Proteica , Proteínas/metabolismo , Soluciones
12.
FEBS J ; 282(21): 4094-113, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260520

RESUMEN

Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.


Asunto(s)
Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Bioestadística , Pollos , Histidina/química , Técnicas In Vitro , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Biochim Biophys Acta ; 1844(7): 1268-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24768771

RESUMEN

Lipids are essential for many biological processes and crucial in the pathogenesis of several diseases. Intracellular lipid-binding proteins (iLBPs) provide mobile hydrophobic binding sites that allow hydrophobic or amphipathic lipid molecules to penetrate into and across aqueous layers. Thus iLBPs mediate the lipid transport within the cell and participate to a spectrum of tissue-specific pathways involved in lipid homeostasis. Structural studies have shown that iLBPs' binding sites are inaccessible from the bulk, implying that substrate binding should involve a conformational change able to produce a ligand entry portal. Many studies have been reported in the last two decades on iLBPs indicating that their dynamics play a pivotal role in regulating ligand binding and targeted release. The ensemble of reported data has not been reviewed until today. This review is thus intended to summarize and possibly generalize the results up to now described, providing a picture which could help to identify the missing notions necessary to improve our understanding of the role of dynamics in iLBPs' molecular recognition. Such notions would clarify the chemistry of lipid binding to iLBPs and set the basis for the development of new drugs.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Lípidos/química , Animales , Humanos , Ligandos , Conformación Proteica
14.
Biomacromolecules ; 14(10): 3549-56, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24032431

RESUMEN

New strategies are requested for the preparation of bioinspired host-guest complexes to be employed in technologically relevant applications, as sensors and optoelectronic devices. We report here a new approach employing a single monomeric protein as host for the strongly fluorescent rhodamine dye. The selected protein, belonging to the intracellular lipid binding protein family, fully encapsulates one rhodamine molecule inside its cavity forming a host-guest complex stabilized by H and π-hydrogen bonds, a salt bridge, and favorable hydrophobic contacts, as revealed by the NMR derived structural model. The protein-dye solutions are easily processable and form homogeneous thin films exhibiting excellent photophysical and morphological properties, as derived from photoluminescence and AFM data. The obtained results represent the proof of concept of the viability of this bio host-guest system for the development of bioinspired optoelectronic devices.


Asunto(s)
Proteínas Portadoras/química , Colorantes Fluorescentes/química , Glicoproteínas de Membrana/química , Rodaminas/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Mediciones Luminiscentes , Ensayo de Materiales , Microscopía de Fuerza Atómica , Modelos Moleculares , Estructura Molecular
15.
Comput Struct Biotechnol J ; 6: e201303021, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24688729

RESUMEN

During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs) not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.

16.
PLoS One ; 7(5): e36990, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606323

RESUMEN

Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/química , Proteoglicanos de Heparán Sulfato/antagonistas & inhibidores , Proteoglicanos de Heparán Sulfato/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Regulación Alostérica/efectos de los fármacos , Inhibidores de la Angiogénesis/química , Humanos , Técnicas In Vitro , Modelos Moleculares , Simulación de Dinámica Molecular , Imitación Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Naftalenosulfonatos/química , Naftalenosulfonatos/farmacología , Resonancia Magnética Nuclear Biomolecular , Mapeo de Interacción de Proteínas , Resonancia por Plasmón de Superficie , Trombospondina 1/química , Trombospondina 1/farmacología
17.
Chemistry ; 18(10): 2857-66, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22298334

RESUMEN

The presence of a disulfide bridge in liver bile acid binding protein (L-BABP/S-S) allows for site-selective binding of two bile acids, glycochenodeoxycholic (GCDA) and glycocholic acid (GCA), differing only in the presence of a hydroxyl group. The protein form devoid of the disulfide bridge (L-BABP) binds both bile salts without discriminating ability. We investigate the determinants of the molecular recognition process in the formation of the heterotypic L-BABP/S-S complex with GCDA [corrected] and GCA [corrected] located in the superficial and inner protein sites, respectively. The comparison of the NMR spectroscopy structure of heterotypic holo L-BABP/S-S, the first reported for this protein family, with that of the homotypic L-BABP complex demonstrates that the introduction of a S-S link between adjacent strands changes the conformation of three key residues, which function as hot-spot mediators of molecular discrimination. The favoured χ(1) rotameric states (t, g(+) and g(-) for E99, Q100 and E109 residues, respectively) allow the onset of an extended intramolecular hydrogen-bond network and the consequent stabilisation of the side-chain orientation of a buried histidine, which is capable of anchoring a specific ligand.


Asunto(s)
Aminoácidos/química , Proteínas Portadoras/química , Disulfuros/química , Hígado/química , Glicoproteínas de Membrana/química , Sitios de Unión , Proteínas Portadoras/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
18.
J Biol Chem ; 287(14): 10922-32, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22308033

RESUMEN

Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Secuencia de Aminoácidos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
19.
Chem Biol Drug Des ; 76(5): 382-91, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20925690

RESUMEN

Heat shock protein 90 (Hsp90) is a prime target for antitumor therapies. The information obtained by molecular dynamics (MD) simulations is combined with NMR data to provide a cross-validated atomic resolution model of the complementary interactions of heat shock protein 90 with a peptidic (shepherdin) and a non-peptidic (5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside, AICAR) inhibitor, showing antiproliferative and proapoptotic activity in multiple tumor cell lines. This approach highlights the relevant role of imidazolic moiety in the interaction of both antagonist molecules. In 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside bound state, one conformation of those present in solution is selected, where imidazolic, H4 and H5 protons have a key role in defining a non-polar region contacting heat shock protein 90 surface. The dynamic equilibrium between N-type and S-type puckered forms of 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside moiety is shown to be functional to inhibitor binding. The first experimental structural data on these inhibitors are presented and discussed as hints for future design of improved molecules.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Péptidos/química , Ribonucleótidos/química , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/farmacología , Sitios de Unión , Línea Celular Tumoral , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Ribonucleótidos/farmacología
20.
Chemistry ; 16(37): 11300-10, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20715194

RESUMEN

The investigation of multi-site ligand-protein binding and multi-step mechanisms is highly demanding. In this work, advanced NMR methodologies such as 2D (1)H-(15)N line-shape analysis, which allows a reliable investigation of ligand binding occurring on micro- to millisecond timescales, have been extended to model a two-step binding mechanism. The molecular recognition and complex uptake mechanism of two bile salt molecules by lipid carriers is an interesting example that shows that protein dynamics has the potential to modulate the macromolecule-ligand encounter. Kinetic analysis supports a conformational selection model as the initial recognition process in which the dynamics observed in the apo form is essential for ligand uptake, leading to conformations with improved access to the binding cavity. Subsequent multi-step events could be modelled, for several residues, with a two-step binding mechanism. The protein in the ligand-bound state still exhibits a conformational rearrangement that occurs on a very slow timescale, as observed for other proteins of the family. A global mechanism suggesting how bile acids access the macromolecular cavity is thus proposed.


Asunto(s)
Ácidos y Sales Biliares/química , Proteínas Portadoras/química , Modelos Químicos , Cinética , Resonancia Magnética Nuclear Biomolecular , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA