Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107690, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680484

RESUMEN

COVID-19 has impacted billions of people since 2019 and unfolded a major healthcare crisis. With an increasing number of deaths and the emergence of more transmissible variants, it is crucial to better understand the biology of the disease-causing virus, the SARS-CoV-2. Peripheral neuropathies appeared as a specific COVID-19 symptom occurring at later stages of the disease. In order to understand the impact of SARS-CoV-2 on the peripheral nervous system, we generated human sensory neurons from induced pluripotent stem cells that we infected with the SARS-CoV-2 strain WA1/2020 and the variants delta and omicron. Using single-cell RNA sequencing, we found that human sensory neurons can be infected by SARS-CoV-2 but are unable to produce infectious viruses. Our data indicate that sensory neurons can be infected by the original WA1/2020 strain of SARS-CoV-2 as well as the delta and omicron variants, yet infectability differs between the original strain and the variants.

2.
Environ Sci Technol ; 56(8): 4788-4794, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35196004

RESUMEN

The significance of neurotoxicological risks associated with anthropogenic pollution is gaining increasing recognition worldwide. In this regard, perturbations in behavioral traits upon exposure to environmentally relevant concentrations of neurotoxic and neuro-modulating contaminants have been linked to diminished ecological fitness of many aquatic species. Despite an increasing interest in behavioral testing in aquatic ecotoxicology there is, however, a notable gap in understanding of the neurophysiological foundations responsible for the altered behavioral phenotypes. One of the canonical approaches to explain the mechanisms of neuro-behavioral changes is functional analysis of neuronal transmission. In aquatic animals it requires, however, invasive, complex, and time-consuming electrophysiology techniques. In this perspective, we highlight emerging prospects of noninvasive, in situ electrophysiology based on multielectrode arrays (MEAs). This technology has only recently been pioneered for the detection and analysis of transient electrical signals in the central nervous system of small model organisms such as zebrafish. The analysis resembles electroencephalography (EEG) applications and provides an appealing strategy for mechanistic explorative studies as well as routine neurotoxicity risk assessment. We outline the prospective future applications and existing challenges of this emerging analytical strategy that is poised to bring new vistas for aquatic ecotoxicology such as greater mechanistic understanding of eco-neurotoxicity and thus more robust risk assessment protocols.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Organismos Acuáticos , Ecotoxicología , Electrofisiología , Estudios Prospectivos , Contaminantes Químicos del Agua/toxicidad
3.
iScience ; 25(1): 103551, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34984324

RESUMEN

The complex 16p11.2 deletion syndrome (16pdel) is accompanied by neurological disorders, including epilepsy, autism spectrum disorder, and intellectual disability. We demonstrated that 16pdel iPSC differentiated neurons from affected people show augmented local field potential activity and altered ceramide-related lipid species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B contributes to changes in neuronal activity and function in 16pdel syndrome through a crucial role for the gene in lipid metabolism.

4.
Zebrafish ; 17(4): 271-277, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32758083

RESUMEN

Zebrafish are an important and expanding experimental system for brain research. We describe a noninvasive electrophysiology technique that can be used in living larvae to measure spontaneous activity in the brain and spinal cord simultaneously. This easy-to-use method uses a commercially available multielectrode array to detect local field potential parameters, and allows for relative coordinated (network) measurements of activity. We demonstrate sensitivity of this system by measuring activity in larvae treated with the antiepileptic drug valproic acid. Valproic acid decreased larval movement and startle response, and decreased spontaneous brain activity. Spinal cord activity did not change after treatment, suggesting valproic acid primarily affects brain function. The observed differences in brain activity, but not spinal cord activity, after valproic acid treatment indicates that brain activity differences are not a secondary effect of decreased startle response and movement. We provide a step-by-step protocol for experiments presented that a novice could easily follow. This electrophysiological method will be useful to the zebrafish neuroscience community.


Asunto(s)
Encéfalo/fisiología , Electrodos , Médula Espinal/fisiología , Pez Cebra/fisiología , Animales , Fenómenos Electrofisiológicos , Larva/crecimiento & desarrollo , Larva/fisiología , Ácido Valproico/farmacología , Pez Cebra/crecimiento & desarrollo
5.
Trends Mol Med ; 25(11): 931-932, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31615720

RESUMEN

In STEM, and particularly in science, many early career researchers find themselves isolated and lacking guidance. There is an enormous need to connect early career scientists with experienced professionals outside their immediate work environment. A new initiative aims to create a supportive community to foster communication between scientists through all stages of their career.


Asunto(s)
Investigación Biomédica , Comunicación , Investigadores , Humanos
6.
FASEB J ; 33(6): 7315-7330, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30860870

RESUMEN

Voltage-dependent sodium (NaV) 1.8 channels regulate action potential generation in nociceptive neurons, identifying them as putative analgesic targets. Here, we show that NaV1.8 channel plasma membrane localization, retention, and stability occur through a direct interaction with the postsynaptic density-95/discs large/zonula occludens-1-and WW domain-containing scaffold protein called membrane-associated guanylate kinase with inverted orientation (Magi)-1. The neurophysiological roles of Magi-1 are largely unknown, but we found that dorsal root ganglion (DRG)-specific knockdown of Magi-1 attenuated thermal nociception and acute inflammatory pain and produced deficits in NaV1.8 protein expression. A competing cell-penetrating peptide mimetic derived from the NaV1.8 WW binding motif decreased sodium currents, reduced NaV1.8 protein expression, and produced hypoexcitability. Remarkably, a phosphorylated variant of the very same peptide caused an opposing increase in NaV1.8 surface expression and repetitive firing. Likewise, in vivo, the peptides produced diverging effects on nocifensive behavior. Additionally, we found that Magi-1 bound to sequence like a calcium-activated potassium channel sodium-activated (Slack) potassium channels, demonstrating macrocomplexing with NaV1.8 channels. Taken together, these findings emphasize Magi-1 as an essential scaffold for ion transport in DRG neurons and a central player in pain.-Pryce, K. D., Powell, R., Agwa, D., Evely, K. M., Sheehan, G. D., Nip, A., Tomasello, D. L., Gururaj, S., Bhattacharjee, A. Magi-1 scaffolds NaV1.8 and Slack KNa channels in dorsal root ganglion neurons regulating excitability and pain.


Asunto(s)
Ganglios Espinales/citología , Guanilato-Quinasas/fisiología , Proteínas de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Proteínas del Tejido Nervioso/fisiología , Nocicepción/fisiología , Canales de potasio activados por Sodio/fisiología , Células Receptoras Sensoriales/fisiología , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Guanilato-Quinasas/antagonistas & inhibidores , Guanilato-Quinasas/genética , Inyecciones , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Dominios PDZ , Mapeo de Interacción de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Nódulos de Ranvier/metabolismo , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Nervios Espinales
7.
J Exp Neurosci ; 11: 1179069517726996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943756

RESUMEN

The Slick (Kcnt2) sodium-activated potassium (KNa) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene-related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

8.
J Biol Chem ; 290(30): 18575-83, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26100633

RESUMEN

Although recent studies have shown the sodium-activated potassium channel SLACK (KCNT1) can contribute to neuronal excitability, there remains little information on the physiological role of the closely related SLICK (KCNT2) channel. Activation of SLICK channels may be important during pathological states such as ischemia, in which an increase in intracellular sodium and chloride can perturb membrane potential and ion homeostasis. We have identified two NFκB-binding sites within the promoter region of the human SLICK (KCNT2) and orthologous rat Slick (Kcnt2) genes, suggesting that conditions in which NFκB transcriptional activity is elevated promote expression of this channel. NFκB binding to the rat Slick promoter was confirmed in vivo by ChIP analyses, and NFκB was found differentially bound to the two sites. We verified NFκB transcriptional regulation of SLICK/Slick by mutational analyses and studying gene expression by luciferase assay in P19 cells, where NFκB is constitutively active. For the rat gene, activation of the Slick promoter was found to be additive in single NFκB mutations and synergistic in double mutations. Unexpectedly, for the human gene, NFκB exhibited cooperativity in activating the SLICK promoter. The human SLICK promoter constructs were then tested under hypoxic conditions in PC-12 cells, where NFκB is not active. Only under hypoxic conditions could luciferase activity be detected; the double NFκB mutant construct failed to exhibit activity. Transcriptional regulation of Slick by NFκB was verified in primary neurons. The Slick transcript decreased 24 h after NFκB inhibition. Our data show SLICK expression is predominantly under the control of NFκB. Because neuronal NFκB activation occurs during stressful stimuli such as hypoxia and injury, our findings suggest that SLICK is a neuroprotective gene.


Asunto(s)
FN-kappa B/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Transcripción Genética , Animales , Hipoxia de la Célula/genética , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Humanos , FN-kappa B/genética , Células PC12 , Canales de Potasio/biosíntesis , Canales de Potasio/genética , Canales de potasio activados por Sodio , Regiones Promotoras Genéticas , Ratas , Transducción de Señal , Sodio/metabolismo
9.
Microbiologyopen ; 3(5): 595-609, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044453

RESUMEN

Arginine methylation is a common posttranslational modification that has far-reaching cellular effects. Trypanosoma brucei is an early-branching eukaryote with four characterized protein arginine methyltransferases (PRMTs), one additional putative PRMT, and over 800 arginine methylated proteins, suggesting that arginine methylation has widespread impacts in this organism. While much is known about the activities of individual T. brucei PRMTs (TbPRMTs), little is known regarding how TbPRMTs function together in vivo. In this study, we analyzed single and selected double TbPRMT knockdowns for the impact on expression of TbPRMTs and global methylation status. Repression of TbPRMT1 caused a decrease in asymmetric dimethylarginine and a marked increase in monomethylarginine that was catalyzed by TbPRMT7, suggesting that TbPRMT1 and TbPRMT7 can compete for the same substrate. We also observed an unexpected and strong interdependence between TbPRMT1 and TbPRMT3 protein levels. This finding, together with the observation of similar methyl landscape profiles in TbPRMT1 and TbPRMT3 repressed cells, strongly suggests that these two enzymes form a functional complex. We show that corepression of TbPRMT6/7 synergistically impacts growth of procyclic-form T. brucei. Our findings also implicate the actions of noncanonical, and as yet unidentified, PRMTs in T. brucei. Together, our studies indicate that TbPRMTs display a functional interplay at multiple levels.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/parasitología
10.
PLoS One ; 8(10): e78015, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24250748

RESUMEN

Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1) complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA) binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.


Asunto(s)
Proteínas Protozoarias/metabolismo , Edición de ARN , Trypanosoma brucei brucei/fisiología , Animales , Técnicas de Silenciamiento del Gen , Humanos , Insectos Vectores/parasitología , Estadios del Ciclo de Vida , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Protozoarias/genética , ARN/genética , ARN/metabolismo , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Nucleic Acids Res ; 40(12): 5637-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22396527

RESUMEN

Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/metabolismo , Subunidades de Proteína/metabolismo , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/genética , Técnicas del Sistema de Dos Híbridos
12.
Eukaryot Cell ; 9(6): 866-77, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20418380

RESUMEN

Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Citocinesis , Genoma de Protozoos , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Protozoarias/genética , Alineación de Secuencia , Trypanosoma brucei brucei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...