Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 370: 182-194, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38641022

RESUMEN

Upadacitinib, classified as a highly soluble drug, is commercially marketed as RINVOQ®, a modified-release formulation incorporating hydroxypropyl methylcellulose as a matrix system to target extended release throughout the gastrointestinal (GI) tract. Our study aimed to explore how drug release will occur throughout the GI tract using a plethora of in vitro and in silico tools. We built a Physiologically-Based Pharmacokinetic (PBPK) model in GastroPlus™ to predict the systemic concentrations of the drug when administered using in vitro dissolution profiles as input to drive luminal dissolution. A series of in vitro dissolution experiments were gathered using the USP Apparatus I, III and IV in presence of biorelevant media, simulating both fasted and fed state conditions. A key outcome from the current study was to establish an in vitro-in vivo correlation (IVIVC) between (i) the dissolution profiles obtained from the USP I, III and IV methods and (ii) the fraction absorbed of drug as deconvoluted from the plasma concentration-time profile of the drug. When linking the fraction dissolved as measured in the USP IV model, a Level A IVIVC was established. Moreover, when using the different dissolution profiles as input for PBPK modeling, it was also observed that predictions for plasma Cmax and AUC were most accurate for USP IV compared to the other models (based on predicted versus observed ratios). Furthermore, the PBPK model has the utility to extract the predicted concentrations at the level of the colon which can be of utmost interest when working with specific in vitro assays.

2.
Mol Pharm ; 20(11): 5429-5439, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37878668

RESUMEN

A TIM-1 model is an in vitro gastrointestinal (GI) simulator considering crucial physiological parameters that will affect the in vivo drug release process. The outcome of these experiments can indicate the critical bioavailability attributes (CBAs) that will impact the fraction absorbed in vivo. The model is widely used in the nonclinical stage of drug product development to assess the bioaccessible fraction of drugs for numerous candidate formulations. In this work, we developed a digital TIM-1 model in the GastroPlus platform. In a first step, we performed validation experiments to assess the luminal concentrations and bioaccessible fractions for two marker compounds. The digital TIM-1 was able to adequately reflect the luminal concentrations and bioaccessible fractions of these markers under different prandial conditions, confirming the appropriate integration of mass transfer in the TIM-1 model. In a second set of experiments, a case example with PF-07059013 was performed, where luminal concentrations and bioaccessible fractions were predicted for 200 and 1000 mg doses under fasted and achlorhydric conditions. Experimental and simulated data pointed out that the achlorhydric effect was more pronounced at the 1000 mg dose, showing a solubility-limited dissolution and, consequently, decreased bioaccessible fraction. Toward future applications, the digital TIM-1 model will be thoroughly applied to explore a link between in vitro and in vivo outcomes based on more case examples with model compounds with the access of TIM-1 and plasma data. Ideally, this digital TIM-1 can be directly used in GastroPlus to explore an in vitro-in vivo correlation (IVIVC) between the fraction dissolved (digital TIM-1 settings) and the fraction absorbed (human PBPK settings).


Asunto(s)
Química Farmacéutica , Absorción Intestinal , Humanos , Absorción Intestinal/fisiología , Modelos Biológicos , Tracto Gastrointestinal , Liberación de Fármacos
3.
Mol Pharm ; 20(11): 5416-5428, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37878746

RESUMEN

The TIM-1 gastrointestinal model is one of the most advanced in vitro systems currently available for biorelevant dissolution testing. This technology, the initial version of which was developed nearly 30 years ago and has been subject to a number of significant updates over this period, simulates the dynamic environment of the human gastrointestinal tract, including pH, transfer times, secretion of bile, enzymes, and electrolytes. In the pharmaceutical industry, the TIM-1 system is used to support drug product design and provide a biopredictive assessment of drug product performance. Typically, the bioaccessibility data sets generated by TIM-1 experiments are used to qualitatively compare formulation performance, and the use of bioaccessibility data as inputs for physiologically based pharmacokinetic (PBPK) modeling for quantitative predictions is limited. To expand the utility of the TIM-1 model beyond standard bioaccessibility measurements (which define the fraction available for absorption), we have developed a computational tool, TIM-1 Data Explorer, to describe the fluid and mass balance within the TIM-1 system. The use of this tool allows a detailed inspection and in-depth interpretation of the experimental data. In addition to mass balance calculation, this model also can be used to describe the critical processes a drug substance would undergo during a TIM-1 experiment, such as dissolution, precipitation on transfer from the stomach to duodenum, and redissolution. The TIM-1 Data Explorer was validated in two case studies. In the first case study with paracetamol, we have shown the ability of the simulator to adequately describe mass transfer events within the TIM-1 system, and in the second study with a weakly basic in-house compound, PF-07059013, the TIM-1 Data Explorer was successfully used to describe dissolution and precipitation processes.


Asunto(s)
Tracto Gastrointestinal , Estómago , Humanos , Simulación por Computador , Duodeno , Absorción Intestinal/fisiología , Modelos Biológicos , Estómago/fisiología
4.
Mol Pharm ; 20(5): 2589-2599, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37037186

RESUMEN

Encorafenib is a kinase inhibitor indicated for the treatment of patients with BRAF mutant melanoma and BRAF mutant metastatic colorectal cancer. To understand the effect of food and coadministration with a proton-pump inhibitor (PPI), in vitro, in vivo, and in silico data were generated to optimize the clinical dose, evaluate safety, and better understand the oral absorption process under these conditions. Study 1 evaluated the effect of food on the plasma pharmacokinetics, safety, and tolerability after a single oral dose of encorafenib 100 mg. Study 2 evaluated the same end points with coadministration of encorafenib and rabeprazole (PPI perpetrator). The in vitro gastrointestinal TIM-1 model was used to investigate the release of encorafenib and the amount available for absorption under different testing conditions (fasted, fed, and with the use of a PPI). The fasted, fed, and PPI states were predicted for the encorafenib commercial capsule in GastroPlus 9.8. In study 1, both AUCinf and AUClast decreased by 4% with the administration of a high-fat meal. The Cmax was 36% lower than with fasted conditions. All 3 exposure parameters in study 2 (AUCinf, AUClast, and Cmax) had mean changes of <10% when encorafenib was coadministered with a PPI. Using the in vitro gastrointestinal simulator TIM-1, the model demonstrated a similar release of drug, as the bioaccessible fraction, in the 3 conditions was equal (≥80%), predicting no PPI or food effect for this drug formulation. The modeling in GastroPlus 9.8 demonstrated complete absorption of encorafenib when formulated as an amorphous solid dispersion. To obtain these results, it was crucial to integrate the amorphous solubility of the drug that shows a 20-fold higher solubility at pH 6.8 compared with crystalline solubility. The increased amorphous solubility is likely the reason no PPI effect was observed compared with fasted state conditions. The prolongation in gastric emptying in the fed state resulted in delayed plasma Tmax for encorafenib. No dose adjustment is necessary when encorafenib is administered in the fed state or when coadministered with a PPI. Both the TIM-1 and physiologically based pharmacokinetic model results were consistent with the observed clinical data, suggesting that these will be valuable tools for future work.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Inhibidores de la Bomba de Protones , Humanos , Inhibidores de la Bomba de Protones/farmacocinética , Administración Oral , Interacciones Alimento-Droga , Preparaciones Farmacéuticas , Solubilidad , Estudios Cruzados , Disponibilidad Biológica
5.
J Pharm Sci ; 111(1): 197-205, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673096

RESUMEN

We evaluated the environment in TIM-1 luminal compartments using paracetamol and danazol solutions and suspensions and the fed state configuration. Data were compared with recently published data in healthy adults. TIM-1 experiments were performed with a 3-fold downscale. Volumes of secretions in gastric and duodenal compartments adequately reflected the luminal data in adults up to 3 h post drug dosing. pH values in duodenal and jejunal compartments adequately reflected average pH values in adults. In gastric compartment pH values where initially higher than average values in adults and reached baseline levels earlier than in adults. The environment in the TIM-1 gastric compartment and jejunal compartment adequately reflected the average total paracetamol and danazol amounts per volume of contents in the adult stomach and upper small intestine, respectively. Total bile acids concentrations in the micellar phase of contents in duodenal and jejunal compartments overestimated micellar concentrations in the upper small intestine of adults. Adjustments in gastric emptying/acid secretion rates and bile acids identities in the duodenal and jejunal compartments, and application of dynamic bile acids secretion rates are expected to further improve the relevance of luminal conditions in TIM-1 compartments with those in adults.


Asunto(s)
Intestino Delgado , Estómago , Adulto , Simulación por Computador , Duodeno , Humanos , Suspensiones
6.
Mol Pharm ; 18(4): 1530-1543, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33656882

RESUMEN

The aim of the study was to investigate the impact of Crohn's disease (CD) on the performance of a lipid-based formulation of ciprofloxacin in a complex gastrointestinal simulator (TIM-1, TNO) and to compare the luminal environment in terms of bile salt and lipid composition in CD and healthy conditions. CD conditions were simulated in the TIM-1 system with a reduced concentration of porcine pancreatin and porcine bile. The bioaccessibility of ciprofloxacin was similar in simulated CD and healthy conditions considering its extent as well as its time course in the jejunum and ileum filtrate. Differences were observed in terms of the luminal concentration of triglycerides, monoglycerides, and fatty acids in the different TIM-1 compartments, indicating a reduction and delay in the lipolysis of formulation excipients in CD. The quantitative analysis of bile salts revealed higher concentrations for healthy conditions (standard TIM-1 fasted-state protocol) in the duodenum and jejunum TIM-1 compartments compared to published data in human intestinal fluids of healthy subjects. The reduced concentrations of bile salts in simulated CD conditions correspond to the levels observed in human intestinal fluids of healthy subjects in the fasted state.A lipidomics approach with ultra performance liquid chromatography (UPLC)/mass spectrometry (MS) has proven to be a time-efficient method to semiquantitatively analyze differences in fatty acid and bile salt levels between healthy and CD conditions. The dynamic luminal environment in CD and healthy conditions after administration of a lipid-based formulation can be simulated using the TIM-1 system. For ciprofloxacin, an altered luminal lipid composition had no impact on its performance indicating a low risk of altered performance in CD patients.


Asunto(s)
Ciprofloxacina/farmacocinética , Enfermedad de Crohn/tratamiento farmacológico , Excipientes/química , Mucosa Intestinal/metabolismo , Lípidos/química , Administración Oral , Animales , Ácidos y Sales Biliares/metabolismo , Ciprofloxacina/administración & dosificación , Enfermedad de Crohn/patología , Ayuno , Voluntarios Sanos , Humanos , Íleon/metabolismo , Íleon/patología , Mucosa Intestinal/patología , Yeyuno/metabolismo , Yeyuno/patología , Lipidómica , Pancreatina/metabolismo , Suspensiones , Porcinos , Distribución Tisular
7.
Eur J Pharm Biopharm ; 156: 40-49, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32882421

RESUMEN

During the OrBiTo project, our knowledge on the gastrointestinal environment has improved substantially and biorelevant media composition have been refined. The aim of this study was to propose optimized biorelevant testing conditions for modified release products, to evaluate the reproducibility of the optimized compendial apparatus III (USP apparatus III) and compendial apparatus IV (USP apparatus IV, open-loop mode) dissolution methods and to evaluate the usefulness of these methods to forecast the direction of food effects, if any, based on the results of two «ring¼ studies and by using two model modified release (MR) products, Ciproxin / Cipro XR and COREG CR. Six OrBiTo partners participated in each of the ring studies. All laboratories were provided with standard protocols, pure drug substance, and dose units. For the USP apparatus III, the dissolution methods applied to Ciproxin / Cipro XR, a monolithic MR product of an active pharmaceutical ingredient (API) with moderate aqueous solubility, were robust with low intra- and inter-laboratory data variability. Data from all partners were in line on a qualitative basis with food effect data in humans. For the USP apparatus IV, the dissolution methods applied to COREG CR, a multiparticulate, pH dependent, MR product of an API with low and pH dependent solubility led to high intra- and inter- laboratory data variability. Data from all partners were in line, on a qualitative basis, with the previously observed food effects in humans.


Asunto(s)
Química Farmacéutica/métodos , Ciprofloxacina/farmacocinética , Liberación de Fármacos , Interacciones Alimento-Droga , Tracto Gastrointestinal , Disponibilidad Biológica , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Combinación de Medicamentos , Liberación de Fármacos/fisiología , Interacciones Alimento-Droga/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Humanos , Hidrocortisona/química , Hidrocortisona/farmacocinética , Solubilidad
8.
Eur J Pharm Biopharm ; 140: 141-148, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31051249

RESUMEN

Following a previous study which aimed to determine the interlaboratory reproducibility of biorelevant dissolution testing in the USP 2 apparatus for commercial formulations of two weak acids (ibuprofen and zafirlukast), this study attempts to determine the interlaboratory reproducibility using a similar protocol for a commercially available formulation of a weak base, indinavir. Fourteen partners including twelve industrial and two academic partners participated in this study. To ensure uniformity, all partners were provided with a standardized protocol to perform (i) a single medium dissolution test in fasted state simulated gastric and intestinal fluids (FaSSGF and FaSSIF, respectively) and (ii) a two-stage dissolution experiment simulating gastrointestinal transfer. Optionally, partners could run a single-stage dissolution test in fed state simulated intestinal fluid (FeSSIF). For each dissolution test, one Crixivan® capsule (containing 400 mg indinavir as its sulfate salt) was added as dose of interest. For the single medium dissolution test in FaSSIF, all partners observed rapid release of indinavir resulting in supersaturated concentrations, followed by precipitation to equilibrium solubility. The degree and period of supersaturation varied among the participating laboratories. Average dissolution profiles in FeSSIF appeared to be highly reproducible with dissolved concentrations remaining lower than the thermodynamic solubility of indinavir in FeSSIF. For the two-stage dissolution test, most partners observed supersaturated concentrations in the intestinal compartment; two partners observed no supersaturation due to immediate precipitation. Given the fact that a high interlaboratory but low intralaboratory variability was observed when supersaturation/precipitation occurred, an undefined factor was hypothesized as a potential cause of the variability in precipitation. Hence, the impact of several experimental factors on the supersaturation and precipitation behavior of indinavir was investigated in a next step. The investigation indicated that variability is likely attributable to a combination of factors, especially, the time elapsed between sampling and dilution of the sample with the mobile phase. Therefore, when designing a test in which supersaturation and precipitation is anticipated, stringent control of the test methodology, especially regarding sampling and dilution, is needed.


Asunto(s)
Preparaciones Farmacéuticas/química , Precipitación Química , Química Farmacéutica/métodos , Tracto Gastrointestinal/metabolismo , Reproducibilidad de los Resultados , Solubilidad
9.
Mol Pharm ; 14(12): 4192-4201, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28737403

RESUMEN

Dissolution testing with biorelevant media has become widespread in the pharmaceutical industry as a means of better understanding how drugs and formulations behave in the gastrointestinal tract. Until now, however, there have been few attempts to gauge the reproducibility of results obtained with these methods. The aim of this study was to determine the interlaboratory reproducibility of biorelevant dissolution testing, using the paddle apparatus (USP 2). Thirteen industrial and three academic laboratories participated in this study. All laboratories were provided with standard protocols for running the tests: dissolution in FaSSGF to simulate release in the stomach, dissolution in a single intestinal medium, FaSSIF, to simulate release in the small intestine, and a "transfer" (two-stage) protocol to simulate the concentration profile when conditions are changed from the gastric to the intestinal environment. The test products chosen were commercially available ibuprofen tablets and zafirlukast tablets. The biorelevant dissolution tests showed a high degree of reproducibility among the participating laboratories, even though several different batches of the commercially available medium preparation powder were used. Likewise, results were almost identicalbetween the commercial biorelevant media and those produced in-house. Comparing results to previous ring studies, including those performed with USP calibrator tablets or commercially available pharmaceutical products in a single medium, the results for the biorelevant studies were highly reproducible on an interlaboratory basis. Interlaboratory reproducibility with the two-stage test was also acceptable, although the variability was somewhat greater than with the single medium tests. Biorelevant dissolution testing is highly reproducible among laboratories and can be relied upon for cross-laboratory comparisons.


Asunto(s)
Química Farmacéutica/métodos , Liberación de Fármacos , Biofarmacia/instrumentación , Biofarmacia/métodos , Biofarmacia/normas , Química Farmacéutica/instrumentación , Química Farmacéutica/normas , Mucosa Gástrica/metabolismo , Concentración de Iones de Hidrógeno , Ibuprofeno/farmacocinética , Indoles , Intestino Delgado/metabolismo , Fenilcarbamatos , Reproducibilidad de los Resultados , Solubilidad , Sulfonamidas , Comprimidos , Compuestos de Tosilo/farmacocinética
10.
Eur J Pharm Biopharm ; 105: 193-202, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27322002

RESUMEN

AIMS: Food intake is known to have various effects on gastrointestinal luminal conditions in terms of transit times, hydrodynamic forces and/or luminal fluid composition and can therefore affect the dissolution behavior of solid oral dosage forms. The aim of this study was to investigate and detect the dosage form-dependent food effect that has been observed for two extended-release formulations of nifedipine using in vitro dissolution tests. METHODS: Two monolithic extended release formulations, the osmotic pump Adalat® XL 60mg and matrix-type Adalat® Eins 30mg formulation, were investigated with biorelevant dissolution methods using the USP apparatus III and IV under both simulated prandial states, and their corresponding quality control dissolution method. In vitro data were compared to published and unpublished in vivo data using deconvolution-based in vitro - in vivo correlation (IVIVC) approaches. RESULTS: Quality control dissolution methods tended to overestimate the dissolution rate due to the excessive solubilizing capabilities of the sodium dodecyl sulfate (SDS)-containing dissolution media. Using Level II biorelevant media the dosage form dependent food effect for nifedipine was described well when studied with the USP apparatus III, whereas the USP apparatus IV failed to detect the positive food effect for the matrix-type dosage form. CONCLUSIONS: It was demonstrated that biorelevant methods can serve as a useful tool during formulation development as they were able to qualitatively reflect the in vivo data.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Formas de Dosificación , Interacciones Alimento-Droga , Nifedipino/farmacología , Bloqueadores de los Canales de Calcio/administración & dosificación , Preparaciones de Acción Retardada , Humanos , Nifedipino/administración & dosificación , Solubilidad
11.
Int J Pharm ; 453(2): 380-8, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23727143

RESUMEN

The objectives of this study were to demonstrate the importance of experimental set-up and type of coformer for the enhanced dissolution properties of cocrystals. Carbamazepine-saccharin and carbamazepine-nicotinamide cocrystals were prepared by the sonic slurry method and characterised with SEM, DSC, XRPD and particle size analysis. Solubility and dissolution testing (closed and open system) were performed in compendial media and media with a physiologically relevant amount of surfactant. Carbamazepine cocrystals (1:1 molar ratio) did not show a difference in the equilibrium solubility compared to the carbamazepine in compendial media but a substantial difference was observed in modified media. In compendial media, a faster dissolution rate was obtained only from the carbamazepine-saccharin cocrystal, whereas in modified media both cocrystals had a substantial higher dissolution compared to carbamazepine. With the selected method a clear difference in the dissolution profiles of each cocrystal is shown, driven by the characteristics of the coformer used. This study demonstrated that improved dissolution of carbamazepine from the cocrystal forms can be revealed only by appropriate selection of in vitro conditions. The characteristics of the coformer define a critical variable for dissolution of pharmaceutical cocrystals with important implications for their in vivo performance.


Asunto(s)
Carbamazepina/química , Niacinamida/química , Sacarina/química , Rastreo Diferencial de Calorimetría , Cristalización , Tamaño de la Partícula , Difracción de Polvo , Solubilidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...