Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 64(8): 100408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393952

RESUMEN

Weight gain is a common harmful side effect of atypical antipsychotics used for schizophrenia treatment. Conversely, treatment with the novel phosphodiesterase-10A (PDE10A) inhibitor MK-8189 in clinical trials led to significant weight reduction, especially in patients with obesity. This study aimed to understand and describe the mechanism underlying this observation, which is essential to guide clinical decisions. We hypothesized that PDE10A inhibition causes beiging of white adipose tissue (WAT), leading to weight loss. Magnetic resonance imaging (MRI) methods were developed, validated, and applied in a diet-induced obesity mouse model treated with a PDE10A inhibitor THPP-6 or vehicle for measurement of fat content and vascularization of adipose tissue. Treated mice showed significantly lower fat fraction in white and brown adipose tissue, and increased perfusion and vascular density in WAT versus vehicle, confirming the hypothesis, and matching the effect of CL-316,243, a compound known to cause adipose tissue beiging. The in vivo findings were validated by qPCR revealing upregulation of Ucp1 and Pcg1-α genes, known markers of WAT beiging, and angiogenesis marker VegfA in the THPP-6 group. This work provides a detailed understanding of the mechanism of action of PDE10A inhibitor treatment on adipose tissue and body weight and will be valuable to guide both the use of MK-8189 in schizophrenia and the potential application of the target for weight loss indication.


Asunto(s)
Tejido Adiposo Blanco , Inhibidores de Fosfodiesterasa , Ratones , Animales , Inhibidores de Fosfodiesterasa/farmacología , Obesidad/genética , Tejido Adiposo Pardo/patología , Pérdida de Peso , Imagen por Resonancia Magnética/efectos adversos
2.
Phys Med Biol ; 68(2)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36595245

RESUMEN

Objective.In the field of radiation oncology, the benefit of MRI goes beyond that of providing high soft-tissue contrast images for staging and treatment planning. With the recent clinical introduction of hybrid MRI linear accelerators it has become feasible to map physiological parameters describing diffusion, perfusion, and relaxation during the entire course of radiotherapy, for example. However, advanced data analysis tools are required for extracting qualified prognostic and predictive imaging biomarkers from longitudinal MRI data. In this study, we propose a new prediction framework tailored to exploit temporal dynamics of tissue features from repeated measurements. We demonstrate the framework using a newly developed decomposition method for tumor characterization.Approach.Two previously published MRI datasets with multiple measurements during and after radiotherapy, were used for development and testing:T2-weighted multi-echo images obtained for two mouse models of pancreatic cancer, and diffusion-weighted images for patients with brain metastases. Initially, the data was decomposed using the novel monotonous slope non-negative matrix factorization (msNMF) tailored for MR data. The following processing consisted of a tumor heterogeneity assessment using descriptive statistical measures, robust linear modelling to capture temporal changes of these, and finally logistic regression analysis for stratification of tumors and volumetric outcome.Main Results.The framework was able to classify the two pancreatic tumor types with an area under curve (AUC) of 0.999,P< 0.001 and predict the tumor volume change with a correlation coefficient of 0.513,P= 0.034. A classification of the human brain metastases into responders and non-responders resulted in an AUC of 0.74,P= 0.065.Significance.A general data processing framework for analyses of longitudinal MRI data has been developed and applications were demonstrated by classification of tumor type and prediction of radiotherapy response. Further, as part of the assessment, the merits of msNMF for tumor tissue decomposition were demonstrated.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Animales , Ratones , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/radioterapia , Aceleradores de Partículas , Perfusión , Imagen de Difusión por Resonancia Magnética/métodos
3.
Cancer Res ; 82(8): 1658-1668, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35404400

RESUMEN

Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.


Asunto(s)
Neoplasias de la Mama , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Hemoglobinas , Humanos , Ratones , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Receptores de Estrógenos , Tomografía
4.
Front Oncol ; 12: 803777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311156

RESUMEN

Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.

5.
Tomography ; 8(1): 341-355, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202193

RESUMEN

Purpose: Success of clinical trials increasingly relies on effective selection of the target patient populations. We hypothesize that computational analysis of pre-accrual imaging data can be used for patient enrichment to better identify patients who can potentially benefit from investigational agents. Methods: This was tested retrospectively in soft-tissue sarcoma (STS) patients accrued into a randomized clinical trial (SARC021) that evaluated the efficacy of evofosfamide (Evo), a hypoxia activated prodrug, in combination with doxorubicin (Dox). Notably, SARC021 failed to meet its overall survival (OS) objective. We tested whether a radiomic biomarker-driven inclusion/exclusion criterion could have been used to improve the difference between the two arms (Evo + Dox vs. Dox) of the study. 164 radiomics features were extracted from 296 SARC021 patients with lung metastases, divided into training and test sets. Results: A single radiomics feature, Short Run Emphasis (SRE), was representative of a group of correlated features that were the most informative. The SRE feature value was combined into a model along with histological classification and smoking history. This model as able to identify an enriched subset (52%) of patients who had a significantly longer OS in Evo + Dox vs. Dox groups [p = 0.036, Hazard Ratio (HR) = 0.64 (0.42-0.97)]. Applying the same model and threshold value in an independent test set confirmed the significant survival difference [p = 0.016, HR = 0.42 (0.20-0.85)]. Notably, this model was best at identifying exclusion criteria for patients most likely to benefit from doxorubicin alone. Conclusions: The study presents a first of its kind clinical-radiomic approach for patient enrichment in clinical trials. We show that, had an appropriate model been used for selective patient inclusion, SARC021 trial could have met its primary survival objective for patients with metastatic STS.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Inteligencia Artificial , Doxorrubicina/uso terapéutico , Humanos , Estudios Retrospectivos
6.
Rep Pract Oncol Radiother ; 26(1): 29-34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948299

RESUMEN

BACKGROUND: The purpose of this study was to characterize pre-treatment non-contrast computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (PET) based radiomics signatures predictive of pathological response and clinical outcomes in rectal cancer patients treated with neoadjuvant chemoradiotherapy (NACR T). MATERIALS AND METHODS: An exploratory analysis was performed using pre-treatment non-contrast CT and PET imaging dataset. The association of tumor regression grade (TRG) and neoadjuvant rectal (NAR) score with pre-treatment CT and PET features was assessed using machine learning algorithms. Three separate predictive models were built for composite features from CT + PET. RESULTS: The patterns of pathological response were TRG 0 (n = 13; 19.7%), 1 (n = 34; 51.5%), 2 (n = 16; 24.2%), and 3 (n = 3; 4.5%). There were 20 (30.3%) patients with low, 22 (33.3%) with intermediate and 24 (36.4%) with high NAR scores. Three separate predictive models were built for composite features from CT + PET and analyzed separately for clinical endpoints. Composite features with α = 0.2 resulted in the best predictive power using logistic regression. For pathological response prediction, the signature resulted in 88.1% accuracy in predicting TRG 0 vs. TRG 1-3; 91% accuracy in predicting TRG 0-1 vs. TRG 2-3. For the surrogate of DFS and OS, it resulted in 67.7% accuracy in predicting low vs. intermediate vs. high NAR scores. CONCLUSION: The pre-treatment composite radiomics signatures were highly predictive of pathological response in rectal cancer treated with NACR T. A larger cohort is warranted for further validation.

7.
Theranostics ; 11(11): 5313-5329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859749

RESUMEN

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.


Asunto(s)
Hipoxia/tratamiento farmacológico , Nitroimidazoles/farmacología , Mostazas de Fosforamida/farmacología , Profármacos/farmacología , Sarcoma/tratamiento farmacológico , Animales , Inteligencia Artificial , Línea Celular Tumoral , Aprendizaje Profundo , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Ecosistema , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C3H , Ratones SCID , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
Radiology ; 299(2): E256, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900879
9.
Sci Rep ; 11(1): 5777, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707510

RESUMEN

Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is low. In cancer, this condition is known as pseudohypoxia or the "Warburg Effect". We conclude that rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent with the ecological theory of optimal defense.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia de la Célula , Modelos Biológicos , Oxígeno/metabolismo , Estabilidad Proteica , Procesos Estocásticos , Microambiente Tumoral
10.
Radiology ; 298(3): 505-516, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33399513

RESUMEN

An earlier incorrect version appeared online. This article was corrected on February 10, 2021.


Asunto(s)
Diagnóstico por Imagen , Interpretación de Imagen Asistida por Computador , Biomarcadores , Humanos , Reproducibilidad de los Resultados , Terminología como Asunto
11.
NMR Biomed ; 34(3): e4454, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33325086

RESUMEN

External beam radiotherapy (XRT) is a widely used cancer treatment, yet responses vary dramatically among patients. These differences are not accounted for in clinical practice, partly due to a lack of sensitive early response biomarkers. We hypothesize that quantitative magnetic resonance imaging (MRI) measures reflecting tumor heterogeneity can provide a sensitive and robust biomarker of early XRT response. MRI T2 mapping was performed every 72 hours following 10 Gy dose XRT in two models of pancreatic cancer propagated in the hind limb of mice. Interquartile range (IQR) of tumor T2 was presented as a potential biomarker of radiotherapy response compared with tumor growth kinetics, and biological validation was performed through quantitative histology analysis. Quantification of tumor T2 IQR showed sensitivity for detection of XRT-induced tumor changes 72 hours after treatment, outperforming T2-weighted and diffusion-weighted MRI, with very good robustness. Histological comparison revealed that T2 IQR provides a measure of spatial heterogeneity in tumor cell density, related to radiation-induced necrosis. Early IQR changes were found to correlate to subsequent tumor volume changes, indicating promise for treatment response prediction. Our preclinical findings indicate that spatial heterogeneity analysis of T2 MRI can provide a translatable method for early radiotherapy response assessment. We propose that the method may in future be applied for personalization of radiotherapy through adaptive treatment paradigms.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Animales , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Necrosis , Neoplasias/patología , Reproducibilidad de los Resultados , Carga Tumoral
12.
J Med Imaging Radiat Oncol ; 65(1): 102-111, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33258556

RESUMEN

INTRODUCTION: To develop a radiomic-based model to predict pathological complete response (pCR) and outcome following neoadjuvant chemoradiotherapy (NACRT) in oesophageal cancer. METHODS: We analysed 68 patients with oesophageal cancer treated with NACRT followed by esophagectomy, who had staging 18F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET) and computed tomography (CT) scans performed at our institution. An in-house data-chjmirocterization algorithm was used to extract 3D-radiomic features from the segmented primary disease. Prediction models were constructed and internally validated. Composite feature, Fc  = α * FPET  + (1 - α) * FCT , 0 ≤ α ≤ 1, was constructed for each corresponding CT and PET feature. Loco-regional control (LRC), recurrence-free survival (RFS), metastasis-free survival (MFS) and overall survival (OS) were estimated by Kaplan-Meier analysis, and compared using log-rank test. RESULTS: Median follow-up was 59 months. pCR was achieved in 34 (50%) patients. Five-year RFS, LRC, MFS and OS were 67.1%, 88.5%, 75.6% and 57.6%, respectively. Tumour Regression Grade (TRG) 0-1 indicative of complete response or minimal residual disease was significantly associated with improved 5-year LRC [93.7% vs 71.8%; P = 0.020; HR 0.19, 95% CI 0.04-0.85]. Four sepjmirote pCR predictive models were built for CT alone, PET alone, CT+PET and composite. CT, PET and CT+PET models had AUC 0.73 ± 0.08, 0.66 ± 0.08 and 0.77 ± 0.07, respectively. The composite model resulted in an improvement of pCR predicting power with AUC 0.87 ± 0.06. Stratifying patients with a low versus high radiomic score showed clinically relevant improvement in 5-year LRC favouring low-score group (91.1% vs. 80%, 95% CI 0.09-1.77, P = 0.2). CONCLUSION: The composite CT/PET radiomics model was highly predictive of pCR following NACRT. Validation in larger data sets is warranted to determine whether the model can predict clinical outcomes.


Asunto(s)
Neoplasias Esofágicas , Terapia Neoadyuvante , Quimioradioterapia , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/terapia , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Estudios Retrospectivos
13.
Cancer Res ; 80(17): 3461-3462, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878865

RESUMEN

Understanding the effects of novel cancer drugs on the tumor microenvironment will be crucial for their successful use in patients. In this issue of Cancer Research, Ghosh and colleagues discuss the effect of two promising heme-targeting agents on the vascular network in mouse models of lung cancer, utilizing emerging optoacoustic imaging approaches. The findings demonstrating significant, dynamic modulation of tumor hypoxia with the heme-targeting drug treatments create important opportunities for image-guided combination therapy.See related article by Ghosh et al., p. 3542.


Asunto(s)
Neoplasias , Oxígeno , Animales , Hemo , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Fosforilación Oxidativa , Tomografía , Microambiente Tumoral
14.
Cancer Res ; 78(20): 5980-5991, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30115696

RESUMEN

Measuring the functional status of tumor vasculature, including blood flow fluctuations and changes in oxygenation, is important in cancer staging and therapy monitoring. Current clinically approved imaging modalities suffer long procedure times and limited spatiotemporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that may overcome these challenges. By acquiring data at multiple wavelengths, OT can interrogate hemoglobin concentration and oxygenation directly and resolve contributions from injected contrast agents. In this study, we tested whether two dynamic OT techniques, oxygen-enhanced (OE) and dynamic contrast-enhanced (DCE)-OT, could provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. We found that vascular maturity led to changes in vascular function that affected tumor perfusion, modulating the DCE-OT signal. Perfusion in turn regulated oxygen availability, driving the OE-OT signal. In particular, we demonstrate for the first time a strong per-tumor and spatial correlation between imaging biomarkers derived from these in vivo techniques and tumor hypoxia quantified ex vivo Our findings indicate that OT may offer a significant advantage for localized imaging of tumor response to vascular-targeted therapies when compared with existing clinical DCE methods.Significance: Imaging biomarkers derived from optoacoustic tomography can be used as surrogate measures of tumor perfusion and hypoxia, potentially yielding rapid, multiparametric, and noninvasive cancer staging and therapeutic response monitoring in the clinic.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5980/F1.large.jpg Cancer Res; 78(20); 5980-91. ©2018 AACR.


Asunto(s)
Medios de Contraste/química , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Oxígeno/metabolismo , Algoritmos , Animales , Biomarcadores de Tumor/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Necrosis , Perfusión , Técnicas Fotoacústicas , Programas Informáticos , Hipoxia Tumoral
15.
Br J Cancer ; 118(8): 1098-1106, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29576623

RESUMEN

BACKGROUND: Optoacoustic tomography (OT) of breast tumour oxygenation is a promising new technique, currently in clinical trials, which may help to determine disease stage and therapeutic response. However, the ability of OT to distinguish breast tumours displaying different vascular characteristics has yet to be established. The aim of the study is to prove OT as a sensitive technique for differentiating breast tumour models with manifestly different vasculatures. METHODS: Multispectral OT (MSOT) was performed in oestrogen-dependent (MCF-7) and oestrogen-independent (MDA-MB-231) orthotopic breast cancer xenografts. Total haemoglobin (THb) and oxygen saturation (SO2MSOT) were calculated. Pathological and biochemical evaluation of the tumour vascular phenotype was performed for validation. RESULTS: MCF-7 tumours show SO2MSOT similar to healthy tissue in both rim and core, despite significantly lower THb in the core. MDA-MB-231 tumours show markedly lower SO2MSOT with a significant rim-core disparity. Ex vivo analysis revealed that MCF-7 tumours contain fewer blood vessels (CD31+) that are more mature (CD31+/aSMA+) than MDA-MB-231. MCF-7 presented higher levels of stromal VEGF and iNOS, with increased NO serum levels. The vasculogenic process observed in MCF-7 was consistent with angiogenesis, while MDA-MB-231 appeared to rely more on vascular mimicry. CONCLUSIONS: OT is sensitive to differences in the vascular phenotypes of our breast cancer models.


Asunto(s)
Mimetismo Biológico/fisiología , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/diagnóstico , Neoplasias Mamarias Experimentales/patología , Neovascularización Patológica/diagnóstico , Técnicas Fotoacústicas/métodos , Tomografía/métodos , Animales , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Monitoreo de Drogas/métodos , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estadificación de Neoplasias , Neovascularización Patológica/patología , Consumo de Oxígeno/fisiología , Sensibilidad y Especificidad , Hipoxia Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Theranostics ; 7(11): 2900-2913, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824724

RESUMEN

Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes, hence non-invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vessel function assessed ex vivo. OE-OT provides a non-invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo- and radio-therapy.


Asunto(s)
Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Técnicas Fotoacústicas/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Tomografía/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Desnudos
17.
Clin Cancer Res ; 23(22): 6893-6903, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821560

RESUMEN

Purpose: The development of new treatments and their deployment in the clinic may be assisted by imaging methods that allow an early assessment of treatment response in individual patients. The C2A domain of Synaptotagmin-I (C2Am), which binds to the phosphatidylserine (PS) exposed by apoptotic and necrotic cells, has been developed as an imaging probe for detecting cell death. Multispectral optoacoustic tomography (MSOT) is a real-time and clinically applicable imaging modality that was used here with a near infrared (NIR) fluorophore-labeled C2Am to image tumor cell death in mice treated with a TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2) agonist and with 5-fluorouracil (5-FU).Experimental Design: C2Am was labeled with a NIR fluorophore and injected intravenously into mice bearing human colorectal TRAIL-sensitive Colo205 and TRAIL-resistant HT-29 xenografts that had been treated with a potent agonist of TRAILR2 and in Colo205 tumors treated with 5-FU.Results: Three-dimensional (3D) MSOT images of probe distribution showed development of tumor contrast within 3 hours of probe administration and a signal-to-background ratio in regions containing dead cells of >10 after 24 hours. A site-directed mutant of C2Am that is inactive in PS binding showed negligible binding. Tumor retention of the active probe was strongly correlated (R2 = 0.97, P value < 0.01) with a marker of apoptotic cell death measured in histologic sections obtained post mortem.Conclusions: The rapid development of relatively high levels of contrast suggests that NIR fluorophore-labeled C2Am could be a useful optoacoustic imaging probe for detecting early therapy-induced tumor cell death in the clinic. Clin Cancer Res; 23(22); 6893-903. ©2017 AACR.


Asunto(s)
Muerte Celular , Imagen Molecular , Técnicas Fotoacústicas , Tomografía , Animales , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Colorantes Fluorescentes , Xenoinjertos , Humanos , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Tomografía/métodos
18.
J Nucl Med ; 58(5): 807-814, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28126890

RESUMEN

Optoacoustic tomography (OT) is now widely used in preclinical imaging; however, the precision (repeatability and reproducibility) of OT has yet to be determined. Methods: We used a commercial small-animal OT system. Measurements in stable phantoms were used to independently assess the impact of system variables on precision (using coefficient of variation, COV), including acquisition wavelength, rotational position, and frame averaging. Variables due to animal handling and physiology, such as anatomic placement and anesthesia conditions, were then assessed in healthy nude mice using the left kidney and spleen as reference organs. Temporal variation was assessed by repeated measurements over hours and days both in phantoms and in vivo. Sensitivity to small-molecule dyes was determined in phantoms and in vivo; precision was assessed in vivo using IRDye800CW. Results: OT COV in a stable phantom was less than 2.8% across all wavelengths over 30 d. The factors with the greatest impact on signal repeatability in phantoms were rotational position and user experience, both of which still resulted in a COV of less than 4% at 700 nm. Anatomic region-of-interest size showed the highest variation, at 12% and 18% COV in the kidney and spleen, respectively; however, functional SO2 measurements based on a standard operating procedure showed an exceptional reproducibility of less than 4% COV. COV for repeated injections of IRDye800CW was 6.6%. Sources of variability for in vivo data included respiration rate, degree of user experience, and animal placement. Conclusion: Data acquired with our small-animal OT system were highly repeatable and reproducible across subjects and over time. Therefore, longitudinal OT studies may be performed with high confidence when our standard operating procedure is followed.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/instrumentación , Diagnóstico por Imagen de Elasticidad/veterinaria , Riñón/anatomía & histología , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/veterinaria , Bazo/anatomía & histología , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Óptica/instrumentación , Tomografía Óptica/veterinaria
19.
IEEE Trans Med Imaging ; 36(1): 322-331, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27623576

RESUMEN

Optoacoustic tomography is a fast developing imaging modality, combining the high contrast available from optical excitation of tissue with the high resolution and penetration depth of ultrasound detection. Light is subject to both absorption and scattering when traveling through tissue; adequate knowledge of tissue optical properties and hence the spatial fluence distribution is required to create an optoacoustic image that is directly proportional to chromophore concentrations at all depths. Using data from a commercial multispectral optoacoustic tomography (MSOT) system, we implemented an iterative optimization for fluence correction based on a finite-element implementation of the delta-Eddington approximation to the Radiative Transfer Equation (RTE). We demonstrate a linear relationship between the image intensity and absorption coefficients across multiple wavelengths and depths in phantoms. We also demonstrate improved feature visibility and spectral recovery at depth in phantoms and with in vivo measurements, suggesting our approach could in the future enable quantitative extraction of tissue absorption coefficients in biological tissue.


Asunto(s)
Tomografía , Luz , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...