Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biomedicines ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790953

RESUMEN

(1) Background: We investigated the detrimental and protective effects of short-, medium, and long-term treatment with different doses of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) during the aging process. (2) Methods: Rats were treated for 15, 30, and 60 weeks with 1, 3, 10, and 30 J of PBMT-sMF or a placebo control. In addition, eight young rats were not subjected to any procedure or treatment and were euthanized at six weeks old. Skin, muscle, bone, kidney, liver, and blood samples were analyzed. (3) Results: No differences between the groups in the morphology of the skin, muscle, and bone was observed. Glutamic pyruvic transaminase levels were increased in the placebo group after 30 and 60 weeks. Glutamic oxaloacetic transaminase levels were also increased in the placebo group after 30 weeks. An increase in creatinine in the PBMT-sMF 3, 10, and 30 J groups compared with that in the young control group was observed. No significant difference in urea levels between the groups was noted. Vascular endothelial growth factor increased in the PBMT-sMF 10 and 30 J groups after 15 weeks of treatment and in the PBMT-sMF 3 J after 60 weeks. Finally, vascular endothelial growth factor decreased in the PBMT-sMF 30 J group after 30 weeks of treatment. (4) Conclusions: PBMT-sMF did not have detrimental effects on the skin, muscle, bone, kidney, or liver after short-, medium-, and long-term treatments in aging rats. In addition, PBMT-sMF may have protective effects on the muscle tissue in aging rats after short- and long-term treatment.

2.
Oxid Med Cell Longev ; 2022: 9968428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910832

RESUMEN

The ergogenic effects of photobiomodulation therapy combined with a static magnetic field (PBMT-sMF) on exercises with characteristics similar to those of CrossFit® are unknown. This study was aimed at investigating the effects of PBMT-sMF applied at different times on recovery and physical performance in CrossFit® athletes by analyzing functional aspects, muscle damage, inflammatory processes, and oxidative stress. This was a prospectively registered, triple-blinded, placebo-controlled, crossover trial. CrossFit® athletes were recruited and assigned to receive one of the four possible interventions. Each intervention included protocols before and after the exercise (referred to as the workout of the day (WOD)). The four possibilities of intervention were as follows: placebo before and after WOD (placebo), PBMT-sMF before and placebo after WOD (PBMT-sMF before), placebo before and PBMT-sMF after WOD (PBMT-sMF after), and PBMT-sMF before and after WOD (PBMT-sMF before and after). The order of possibilities for the interventions was randomized. The primary outcome was the functional test performance. The secondary outcomes were the subjective perception of exertion, muscle damage, inflammation, and oxidative stress. The outcomes were measured before the WOD; immediately after the intervention; and 1, 24, and 48 hours after the WOD. Statistical analysis was performed using repeated measures ANOVA followed by the Bonferroni post hoc test to examine the differences between the interventions at each time point. Twelve participants were randomized and analyzed for each sequence. PBMT-sMF enhanced the performance on functional tests (calculated as a percentage of change) when applied before or after WOD in the assessment performed immediately post-WOD and at 24 and 48 hours later (p < 0.05) compared to placebo and PBMT-sMF before and after WOD. In terms of the secondary outcomes, PBMT-sMF applied before or after WOD significantly decreased the creatine kinase, catalase, and superoxide dismutase activities and interleukin-6, thiobarbituric acid, and carbonylated protein levels (all p < 0.05) compared to the other possibilities of intervention. In addition, PBMT-sMF applied before and after WOD decreased creatine kinase activity at 24 hours and IL-6 levels at 24 and 48 hours compared to placebo (p < 0.05). None of the participants reported any adverse events. PBMT-sMF enhanced the performance of functional tests, decreased the levels of biochemical markers of muscle damage and inflammation, decreased oxidative stress, and increased antioxidant activity in CrossFit® athletes when applied before or after WOD.


Asunto(s)
Terapia por Luz de Baja Intensidad , Campos Magnéticos , Rendimiento Físico Funcional , Atletas , Creatina Quinasa , Estudios Cruzados , Humanos , Inflamación , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular , Músculo Esquelético/fisiología
3.
Life (Basel) ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629324

RESUMEN

Photobiomodulation therapy (PBMT) has been used to treat patients with chronic neck and/or shoulder pain. However, it is unknown whether the concurrent use of PBMT and static magnetic field (PBMT-sMF) also has positive effects in these patients. The aim of this study was to investigate the effects of PBMT-sMF versus placebo on pain intensity, range of motion (ROM) and treatment satisfaction in patients with chronic nonspecific neck and/or shoulder pain. A randomized controlled trial, with blinded assessors, therapists and patients was carried out. Seventy-two patients with chronic nonspecific neck and/or shoulder pain were randomized to either active PBMT-sMF (n = 36) or placebo PBMT-sMF (n = 36). Patients were treated twice weekly, over 3 weeks. Primary outcome was pain intensity, measured 15 min after the last treatment session and at 24-, 48-, 72-h, and 7-days after the last treatment. Secondary outcomes were ROM, patient' treatment satisfaction, and adverse effects. PBMT-sMF was able to reduce pain intensity in all time points tested compared to placebo (p < 0.05). There was no difference between groups in the secondary outcomes (p > 0.05). Our results suggest that PBMT-sMF is better than placebo to reduce pain in patients with chronic nonspecific neck and/or shoulder pain at short-term.

4.
BMJ Open ; 12(4): e059605, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365544

RESUMEN

OBJECTIVE: To describe management strategies used in public emergency departments in a middle-income country for patients with acute non-specific low back pain. DESIGN: A descriptive, cross-sectional analysis of baseline data from a prospective cohort study. SETTING AND PARTICIPANTS: A study with 600 patients with low back pain presenting in four public emergency departments from São Paulo, Brazil was conducted. OUTCOME MEASURES: Diagnostic tests, pharmacological interventions, and/or referral to other healthcare professionals were collected. Descriptive analyses were used to report all outcomes. RESULTS: Of all patients, 12.5% (n=75) underwent some diagnostic imaging tests. Medication was administered to 94.7% (n=568) of patients. The most common medications were non-steroidal anti-inflammatory drugs (71.3%; n=428), opioids (29%; n=174) and corticosteroids (22.5%; n=135). Only 7.5% (n=45) of patients were referred to another type of care. CONCLUSION: There is a need for research data on low back pain from middle-income countries. There was an acceptable rate of prescription for diagnostic imaging tests. However, there were high medication prescriptions and small rates of referrals to other healthcare services. Our findings indicate that there is still a need to implement best practices in the management of acute low back pain at public emergency departments in Brazil.


Asunto(s)
Dolor de la Región Lumbar , Brasil , Estudios Transversales , Servicio de Urgencia en Hospital , Humanos , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/terapia , Estudios Prospectivos
6.
Life (Basel) ; 12(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35207474

RESUMEN

BACKGROUND: Gait deficit is a major complaint in patients after stroke, restricting certain activities of daily living. Photobiomodulation therapy combined with a static magnetic field (PBMT-SMF) has been studied for several diseases, and the two therapies are beneficia. However, their combination has not yet been evaluated in stroke. Therefore, for PBMT-SMF to be used more often and become an adjunctive tool in the rehabilitation of stroke survivors at physical therapy rehabilitation centers and clinics, some important aspects need to be clarified. PURPOSE: This study aimed to test different doses of PBMT-SMF, to identify the ideal dose to cause immediate effects on the spatiotemporal and kinematic variables of gait in post-stroke patients. METHODS: A randomized, triple-blinded, placebo-controlled crossover pilot study was performed. A total of 10 individuals with hemiparesis within 6 months to 5 years since the occurrence of stroke, aged 45-60 years, were included in the study. Participants were randomly assigned and treated with a single PBMT-SMF dose (sham, 10 J, 30 J, or 50 J) on a single application, with one dose per stage at 7-day intervals between stages. PBMT-SMF was applied with a cluster of 12 diodes (4 of 905 nm laser, 4 of 875 nm LEDs, and 4 of 640 nm LEDs, SMF of 35 mT) at 17 sites on both lower limbs after baseline evaluation: plantar flexors (2), knee extensors (9), and flexors (6). The primary outcome was self-selected walking speed, and the secondary outcomes were kinematic parameters. Gait analysis was performed using SMART-D 140® and SMART-D INTEGRATED WORKSTATION®. The outcomes were measured at the end of each stage after the single application of each PBMT-SMF dose tested. RESULTS: No significant differences (p > 0.05) in spatiotemporal variables were observed between the different doses, compared with the baseline evaluation. However, differences (p < 0.05) were observed in the kinematic variable of the hip in the paretic and non-paretic limbs, specifically in the minimum flexion/extension angulation during the support phase (HMST-MIN) in doses 10 J, 30 J, and 50 J. CONCLUSIONS: A single application of PBMT-SMF at doses of 10 J, 30 J, and 50 J per site of the lower limbs did not demonstrate positive effects on the spatiotemporal variables, but it promoted immediate effects in the kinematic variables of the hip (maximum and minimum flexion/extension angulation during the support phase) in the paretic and non-paretic limbs in post-stroke people.

7.
Lasers Med Sci ; 37(3): 1375-1388, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34669081

RESUMEN

The purpose of this study is to compare the effect of photobiomodulation therapy (PBMT) and cryotherapy (CRT) on muscle recovery outcomes. These searches were performed in PubMed, PEDro, CENTRAL, and VHL (which includes the Lilacs, Medline, and SciELO database) from inception to June 2021. We included randomized clinical trials involved healthy human volunteers (> 18 years) underwent an intervention of PBMT and CRT, when used in both isolated form post-exercise. Standardized mean differences (SMD) or mean difference (MD) with 95% confidence interval were calculated and pooled in a meta-analysis for synthesis. The risk of bias and quality of evidence were assessed through Cochrane risk-of-bias tool and GRADE system. Four articles (66 participants) with a high to low risk of bias were included. The certainty of evidence was classified as moderate to very low. PBMT was estimated to improve the muscle strength (SMD = 1.73, CI 95% 1.33 to 2.13, I2 = 27%, p < 0.00001), reduce delayed onset muscle soreness (MD: - 25.69%, CI 95% - 34.42 to - 16.97, I2 = 89%, p < 0.00001), and lower the concentration of biomarkers of muscle damage (SMD = - 1.48, CI 95% - 1.93 to - 1.03, I2 = 76%, p < 0,00,001) when compared with CRT. There was no difference in oxidative stress and inflammatory levels. Based on our findings, the use of PBMT in muscle recovery after high-intensity exercise appears to be beneficial, provides a clinically important effect, and seems to be the best option when compared to CRT.


Asunto(s)
Crioterapia , Terapia por Luz de Baja Intensidad , Ejercicio Físico/fisiología , Humanos , Fuerza Muscular , Músculos
8.
Biomed Opt Express ; 12(11): 6940-6953, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34858690

RESUMEN

There is evidence about the effects of photobiomodulation therapy (PBMT) alone and combined with a static magnetic field (PBMT-sMF) on skeletal muscle fatigue, physical performance and post-exercise recovery in different types of exercise protocols and sports activity. However, the effects of PBMT-sMF to improve the subsequent performance after a first set of exercises are unknown. Therefore, the aim of this study was to investigate the effects of PBMT-sMF, applied between two sets of exercises, on the subsequent physical performance. A randomized, crossover, triple-blinded (assessors, therapist, and volunteers), placebo-controlled trial was carried out. Healthy non-athlete male volunteers were randomized and treated with a single application of PBMT-sMF and placebo between two sets of an exercise protocol performed on isokinetic dynamometer. The order of interventions was randomized. The primary outcome was fatigue index and the secondary outcomes were total work, peak work, and blood lactate levels. Twelve volunteers were randomized and analyzed to each sequence. PBMT-sMF decreased the fatigue index compared to the placebo PBMT-sMF at second set of the exercise protocol (MD = -6.08, 95% CI -10.49 to -1.68). In addition, PBMT-sMF decreased the blood lactate levels post-intervention, and after the second set of the exercise protocol compared to placebo (p<0.05). There was no difference between PBMT-sMF and placebo in the remaining outcomes tested. Volunteers did not report adverse events. Our results suggest that PBMT-sMF is able to decrease skeletal muscle fatigue, accelerating post-exercise recovery and, consequently, increasing subsequent physical performance when applied between two sets of exercises.

9.
Life (Basel) ; 11(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34833000

RESUMEN

INTRODUCTION: Photobiomodulation therapy, alone (PBMT) or combined with a static magnetic field (PBMT-sMF), has been demonstrated to be effective in the regeneration of tissues, modulation of inflammatory processes, and improvement in functional capacity. However, the effects of PBMT-sMF on the pulmonary system and COVID-19 patients remain scarce. Therefore, in this case report, we demonstrated the use of PBMT-sMF for peripheral oxygen saturation, pulmonary function, massive lung damage, and fibrosis as a pulmonary complication after COVID-19. CASE REPORT: A 53-year-old Mexican man who presented with decreased peripheral oxygen saturation, massive lung damage, and fibrosis after COVID-19 received PBMT-sMF treatment once a day for 45 days. The treatment was irradiated at six sites in the lower thorax and upper abdominal cavity and two sites in the neck area. We observed that the patient was able to leave the oxygen support during the treatment, and increase his peripheral oxygen saturation. In addition, the patient showed improvements in pulmonary severity scores and radiological findings. Finally, the patient presented with normal respiratory mechanics parameters in the medium-term, indicating total pulmonary recovery. CONCLUSIONS: The use of PBMT-sMF may potentially lead to safe treatment of and recovery from pulmonary complications after COVID-19, with regard to the structural and functional aspects.

10.
J Inflamm Res ; 14: 3569-3585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335043

RESUMEN

PURPOSE: We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. PATIENTS AND METHODS: We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. RESULTS: Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). CONCLUSION: Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. TRIAL REGISTRATION NUMBER CLINICAL TRIALSGOV: NCT04386694.

11.
Pain ; 162(6): 1612-1620, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449509

RESUMEN

ABSTRACT: Photobiomodulation therapy (PBMT) has been used in several musculoskeletal disorders to reduce pain, inflammation, and promoting tissue regeneration. The current evidence about the effects of PBMT on low back pain (LBP) is still conflicting. We aimed to evaluate the effects of PBMT against placebo on pain intensity and disability in patients with chronic nonspecific LBP. This was a prospectively registered, randomised placebo-controlled trial, with blinded patients, therapists, and assessors. The study was conducted on an outpatient physical therapy clinic in Brazil, between April 2017 and May 2019. A total of 148 patients with chronic nonspecific LBP were randomised to either active PBMT (n = 74) or placebo (n = 74). Patients from both groups received 12 treatment sessions, 3 times a week, for 4 weeks. Patients from both groups also received an educational booklet based on "The Back Book." Clinical outcomes were measured at baseline and at follow-up appointments at 4 weeks, 3, 6, and 12 months after randomisation. The primary outcomes were pain intensity and disability measured at 4 weeks. We estimated the treatment effects using linear mixed models following the principles of intention-to-treat. There was no clinical important between-group differences in terms of pain intensity (mean difference = 0.01 point; 95% confidence interval = -0.94 to 0.96) and disability (mean difference = -0.63 points; 95% confidence interval = -2.23 to 0.97) at 4 weeks. Patients did not report any adverse events. Photobiomodulation therapy was not better than placebo to reduce pain and disability in patients with chronic nonspecific LBP.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Terapia por Luz de Baja Intensidad , Brasil , Dolor Crónico/terapia , Humanos , Dolor de la Región Lumbar/terapia , Resultado del Tratamiento
12.
Artículo en Inglés | MEDLINE | ID: mdl-33088573

RESUMEN

BACKGROUND: The optimal time-response window for photobiomodulation therapy (PBMT) using low-level laser therapy (LLLT) and/or light emitting diodes therapy (LEDT) combined with static magnetic fields (sMF) before physical activity still was not fully investigated. The aim of the present study was to investigate the better of four time-response windows for PBMT combined with sMF (PBMT-sMF) use before exercise in humans. METHODS: A prospectively registered, randomized, triple-blinded (volunteers, therapists and assessors) placebo-controlled trial was carried out. Sixty healthy untrained male subjects were randomly allocated to six experimental groups (n = 10 per group): PBMT-sMF 5 mins, PBMT-sMF 3 h, PBMT-sMF 6 h, PBMT-sMF 1-day, placebo, and control. The control group performed all procedures, however did not receive any kind of intervention. PBMT-sMF active or PBMT-sMF placebo was applied precisely in different time points after baseline MVC test to ensure that both MVC tests and eccentric exercise protocol would occur at the same hour of the day in all groups. Then, after five minutes, 3 h, 6 h or 1-day (24 h) of PBMT-sMF treatment (active or placebo) the eccentric exercise protocol was performed. The primary outcome was peak torque obtained from maximum voluntary contraction (MVC). The secondary outcomes were creatine kinase (CK), and delayed onset muscle soreness (DOMS). The primary and secondary outcomes were measured at baseline, immediately after, 1 h, 24 h and 48 h after the eccentric exercise protocol. RESULTS: Sixty patients were randomized and analyzed to each sequence. The outcomes in absolute values show that all active PBMT-sMF groups increased (p < 0.05) MVC from immediately after to 1 h after eccentric exercise, and decreased (p < 0.05) CK activity at all time points. However, PBMT-sMF 5 mins, 3 h and 6 h groups showed better results in MVC and CK analysis from 24 h to 48 h, and also to DOMS (p < 0.05) at all time points. Participants did not report any adverse events. CONCLUSIONS: PBMT-sMF can be used from 5 min to 6 h before exercise, and the effects can last up to 54 h after treatment. However, the effects start to decrease when a 1-day (24 h) time-response window is used. TRIAL REGISTRATION: NCT03420391. Registered 05 February 2018.

13.
PLoS One ; 15(8): e0236689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32785240

RESUMEN

OBJECTIVE: To compare the effects of photobiomodulation therapy (PBMT) and pharmacological therapy (glucocorticoids and non-steroidal anti-inflammatory drugs) applied alone and in different combinations in mdx mice. METHODS: The animals were randomized and divided into seven experimental groups treated with placebo, PBMT, prednisone, non-steroidal anti-inflammatory drug (NSAIDs), PBMT plus prednisone and PBMT plus NSAID. Wild type animals were used as control. All treatments were performed during 14 consecutive weeks. Muscular morphology, protein expression of dystrophin and functional performance were assessed at the end of the last treatment. RESULTS: Both treatments with prednisone and PBMT applied alone or combined, were effective in preserving muscular morphology. In addition, the treatments with PBMT (p = 0.0005), PBMT plus prednisone (p = 0.0048) and PBMT plus NSAID (p = 0.0021) increased dystrophin gene expression compared to placebo-control group. However, in the functional performance the PBMT presented better results compared to glucocorticoids (p<0.0001). In contrast, the use of NSAIDs did not appear to add benefits to skeletal muscle tissue in mdx mice. CONCLUSION: We believe that the promising and optimistic results about the PBMT in skeletal muscle of mdx mice may in the future contribute to this therapy to be considered a safe alternative for patients with Duchenne Muscular Dystrophy (DMD) in a washout period (between treatment periods with glucocorticoids), allowing them to remain receiving effective and safe treatment in this period, avoiding at this way periods without administration of any treatment.


Asunto(s)
Distrofina/genética , Terapia por Luz de Baja Intensidad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Distrofia Muscular de Duchenne/terapia , Animales , Antiinflamatorios no Esteroideos/farmacología , Terapia Combinada , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Glucocorticoides/farmacología , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Prednisona/farmacología
14.
J Physiother ; 66(3): 155-165, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32680739

RESUMEN

QUESTION: In people with non-specific low back pain (LBP), what are the effects of photobiomodulation therapy (PBMT) on pain, disability and other outcomes when compared with no intervention, sham PBMT and other treatments, and when used as an adjunct to other treatments? DESIGN: Systematic review of randomised trials with meta-analysis. PARTICIPANTS: People with acute/subacute or chronic non-specific LBP. INTERVENTIONS: Any type of PBMT (laser class I, II and III and light-emitting diodes) compared with no treatment, sham PBMT and other types of treatment, or used as an adjunct to another treatment. OUTCOME MEASURES: Pain intensity, disability, overall improvement, quality of life, work absence and adverse effects. RESULTS: Twelve randomised controlled trials were included (pooled n = 1,046). Most trials had low risk of bias. Compared with sham PBMT, the effect of PBMT on pain and disability was clinically unimportant in people with acute/subacute or chronic LBP. In people with chronic LBP, there was no clinically important difference between the effect of PBMT and the effect of exercise on pain or disability. Although benefits were observed on some other outcomes, these estimates were imprecise and/or based on low-quality evidence. PBMT was estimated to reduce pain (MD -11.20, 95% CI -20.92 to -1.48) and disability (MD -11.90, 95% CI -17.37 to -6.43) more than ultrasound, but these confidence intervals showed important uncertainty about whether the differences in effect were worthwhile or trivial. Conversely, PBMT was estimated to reduce pain (MD 19.00, 95% CI 9.49 to 28.51) and disability (MD 17.40, 95% CI 8.60 to 26.20) less than Tecar (Energy Transfer Capacitive and Resistive) therapy, with marginal uncertainty that these differences in effect were worthwhile. CONCLUSION: Current evidence does not support the use of PBMT to decrease pain and disability in people with non-specific LBP. REGISTRATION: CRD42018088242.


Asunto(s)
Dolor de la Región Lumbar/terapia , Manejo del Dolor/métodos , Fototerapia/métodos , Evaluación de la Discapacidad , Humanos , Dimensión del Dolor , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Artículo en Inglés | MEDLINE | ID: mdl-32308987

RESUMEN

BACKGROUND: Photobiomodulation (PBMT) is a therapy that uses non-ionising forms of light, including low-level lasers and light-emitting diodes (LEDs) that may be capable of modulating cellular activity. Some biological processes may also interact with static magnetic fields (sMF), leading to modulatory effects on cells. Previous studies have verified that the combination of PBMT and sMF (PBMT/sMF) enhances the performance of individuals during aerobic training programs. The detraining period can cause losses in aerobic capacity. However, there is no evidence of the existence of any recourse that can decrease the effects of detraining. We aimed to investigate the effects of PBMT/sMF application during training and detraining to assess the effectiveness of this treatment in reducing the effects of detraining. METHODS: Sixty male volunteers were randomly allocated into four groups- participants who received PBMT/sMF during the training and detraining (PBMT/sMF + PBMT/sMF); participants who received PBMT/sMF during the training and a placebo in the detraining (PBMT/sMF + Placebo); participants who received a placebo during the training and PBMT/sMF in the detraining (Placebo+PBMT/sMF); and participants who received a placebo during the training and detraining (Placebo+Placebo). Participants performed treadmill training over 12 weeks (3 sessions/week), followed by 4 weeks of detraining. PBMT/sMF was applied using a 12-diode emitter (four 905 nm super-pulsed lasers, four 875 nm light-emitting diodes (LEDs), four 640 nm LEDs, and a 35 mT magnetic field) at 17 sites on each lower limb (dosage: 30 J per site). The data were analysed by two-way repeated measures analysis of variance (ANOVA, time vs experimental group) with post-hoc Bonferroni correction. RESULTS: The percentage of change in time until exhaustion and in maximum oxygen consumption was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group at all time-points (p < 0.05). Moreover, the percentage of decrease in body fat at the 16th week was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group (p < 0.05). CONCLUSIONS: PBMT/sMF can potentiate the effects of aerobic endurance training and decrease performance loss after a 4-week detraining period. Thus, it may prove to be an important tool for both amateur and high-performance athletes as well as people undergoing rehabilitation. TRIAL REGISTRATION: NCT03879226. Trial registered on 18 March 2019.

16.
Braz J Phys Ther ; 24(6): 539-549, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31866161

RESUMEN

BACKGROUND: The evidence of the influence of Kinesio Taping® in changing electromyographic signal intensity of the lumbar musculature in patients with chronic non-specific low back pain (LBP) is very sparse. OBJECTIVES: To evaluate if Kinesio Taping® changes the electromyographic signal intensity of the longissimus and iliocostalis muscles in patients with chronic non-specific LBP. METHODS: Prospectively registered, three-arm randomized controlled trial with a blinded assessor. Patients were randomly allocated to the following interventions: 1) Kinesio Taping® Group (n=21), where patients received the tape according to the manufacturer's manual; 2) Placebo Group (i.e. normal surgical tape) (n=21); and 3) Non-treatment control Group (n=21). Assessments were performed at baseline, immediately after, and 30min after the intervention. The primary outcome was muscle activity of the iliocostalis and longissimus muscles as measured by surface electromyography. The secondary outcome was pain intensity (measured with a 0-10 Numerical Rating Scale). The effects of treatment were calculated using linear mixed models. RESULTS: A total of 63 patients were recruited. Follow up rate was high (98.4%). Patients were mostly women with moderate levels of pain and disability. Kinesio Taping® was better than the control and placebo groups in only 4 of 96 statistical comparisons, likely reflective of type I error due to multiple comparisons. No statistically significant differences were identified for the immediate reduction in pain intensity between groups. CONCLUSION: Kinesio Taping® did not change the electromyographic signal intensity of the longissimus and iliocostalis muscles or reduce pain intensity in patients with chronic low back pain. Clinicaltrials.gov: NCT02759757 (https://clinicaltrials.gov/ct2/show/NCT02759757).


Asunto(s)
Cinta Atlética , Dolor de la Región Lumbar/terapia , Músculo Esquelético/fisiología , Electromiografía/métodos , Femenino , Humanos , Región Lumbosacra
17.
Oxid Med Cell Longev ; 2019: 6239058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827687

RESUMEN

The effects of preexercise photobiomodulation therapy (PBMT) to enhance performance, accelerate recovery, and attenuate exercise-induced oxidative stress were still not fully investigated, especially in high-level athletes. The aim of this study was to evaluate the effects of PBMT (using infrared low-level laser therapy) applied before a progressive running test on functional aspects, muscle damage, and inflammatory and oxidative stress markers in high-level soccer players. A randomized, triple-blind, placebo-controlled crossover trial was performed. Twenty-two high-level male soccer players from the same team were recruited and treated with active PBMT and placebo. The order of interventions was randomized. Immediately after the application of active PBMT or placebo, the volunteers performed a standardized high-intensity progressive running test (ergospirometry test) until exhaustion. We analyzed rates of oxygen uptake (VO2 max), time until exhaustion, and aerobic and anaerobic threshold during the intense progressive running test. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, levels of interleukin-1ß (IL-1-ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), levels of thiobarbituric acid (TBARS) and carbonylated proteins, and catalase (CAT) and superoxide dismutase (SOD) activities were measured before and five minutes after the end of the test. PBMT increased the VO2 max (both relative and absolute values-p < 0.0467 and p < 0.0013, respectively), time until exhaustion (p < 0.0043), time (p < 0.0007) and volume (p < 0.0355) in which anaerobic threshold happened, and volume in which aerobic threshold happened (p < 0.0068). Moreover, PBMT decreased CK (p < 0.0001) and LDH (p < 0.0001) activities. Regarding the cytokines, PBMT decreased only IL-6 (p < 0.0001). Finally, PBMT decreased TBARS (p < 0.0001) and carbonylated protein levels (p < 0.01) and increased SOD (p < 0.0001)and CAT (p < 0.0001) activities. The findings of this study demonstrate that preexercise PBMT acts on different functional aspects and biochemical markers. Moreover, preexercise PBMT seems to play an important antioxidant effect, decreasing exercise-induced oxidative stress and consequently enhancing athletic performance and improving postexercise recovery. This trial is registered with Clinicaltrials.gov NCT03803956.


Asunto(s)
Atletas/estadística & datos numéricos , Ejercicio Físico , Inflamación/prevención & control , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/fisiología , Estrés Oxidativo/efectos de la radiación , Carrera , Adolescente , Adulto , Biomarcadores/análisis , Estudios Cruzados , Humanos , Inflamación/metabolismo , Masculino , Fatiga Muscular/efectos de la radiación , Oxidación-Reducción , Fútbol , Adulto Joven
18.
BMJ Open ; 9(10): e030194, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31662370

RESUMEN

INTRODUCTION: In recent years, it has been demonstrated that photobiomodulation therapy (PBMT) using low-level laser therapy and/or light-emitting diode therapy combined to static magnetic field (sMF) has ergogenic effects, improving muscular performance and accelerating postexercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT/sMF in detraining after a strength-training protocol. METHODS AND ANALYSIS: The study will be a randomised, triple-blind, placebo-controlled clinical trial. Healthy male volunteers will be randomly distributed into four experimental groups: PBMT/sMF before training sessions + PBMT/sMF during detraining, PBMT/sMF before training sessions + placebo during detraining, placebo before training sessions + PBMT/sMF during detraining and placebo before training sessions + placebo during detraining. Strength-training sessions will be carried out over 12 weeks, and the detraining period will occur during the 4 weeks after. The muscular strength and the structural properties of quadriceps will be analysed. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be disseminated through scientific publications in international peer-reviewed journals and presented at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03858179.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Magnetoterapia/métodos , Fuerza Muscular , Músculo Cuádriceps , Entrenamiento de Fuerza/métodos , Adulto , Humanos , Campos Magnéticos , Masculino , Adulto Joven
19.
Medicine (Baltimore) ; 98(18): e15317, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31045769

RESUMEN

INTRODUCTION: Over the last 10 years, it has been demonstrated that photobiomodulation therapy (PBMT), also known as phototherapy, using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has ergogenic effects, improving athletic performance and also accelerating post-exercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT in detraining after an aerobic endurance training protocol. METHODS AND ANALYZES: A randomized, triple-blind, placebo-controlled clinical trial will be carried out. Healthy male volunteers will be randomly distributed into 4 experimental groups: PBMT before and after training sessions + PBMT during detraining, PBMT before and after training sessions + placebo during detraining, placebo before and after training sessions + PBMT during detraining, and placebo before and after training sessions + placebo during detraining. The aerobic endurance training sessions will be carried out using motorized treadmills during 12 weeks, and the detraining period will consist in the next 4 weeks after that. It will be analyzed the time until exhaustion, maximal oxygen uptake (VO2max), and fat percentage of volunteers. DISCUSSION: Despite the increasing body of evidence for the use of PBMT as an ergogenic agent, several aspects remain unknown. The findings of this study will contribute to the advance of knowledge in this field regarding clinical applications. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be further disseminated through scientific publications in international peer-reviewed journals and presentations at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03879226.


Asunto(s)
Rendimiento Atlético/estadística & datos numéricos , Entrenamiento Aeróbico/métodos , Terapia por Luz de Baja Intensidad/efectos adversos , Sustancias para Mejorar el Rendimiento/efectos adversos , Adolescente , Adulto , Rendimiento Atlético/fisiología , Distribución de la Grasa Corporal/estadística & datos numéricos , Prueba de Esfuerzo/métodos , Humanos , Terapia por Luz de Baja Intensidad/métodos , Masculino , Consumo de Oxígeno/fisiología , Placebos , Adulto Joven
20.
Medicine (Baltimore) ; 98(15): e15177, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30985704

RESUMEN

INTRODUCTION: Low back pain (LBP) is ranked as one of the most prevalent health conditions. It is likely that some inflammatory mediators could be associated with pain and disability in these patients. Photobiomodulation therapy (PBMT) is a non-pharmacological therapy often used in patients with LBP and one of the possible mechanisms of action of therapy is modulate inflammatory mediators. However, to date there are no studies that evaluated the effects of PBMT on the levels of inflammatory mediators in patients with LBP. The aim of this study is to evaluate the acute effects of PBMT on systemic levels of inflammatory mediators and pain intensity in patients with chronic non-specific low back pain. METHODS AND ANALYSIS: This is a prospectively registered, two-arm randomized placebo-controlled trial with blinded patients, assessors and therapists. Eighteen patients with chronic non-specific LBP will be randomized into 2 groups: placebo or active PBMT. The treatment will be provided in a single session. The primary outcome will be levels of prostaglandin E2 (PGE2). The secondary outcomes will be levels of necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and pain intensity. Biochemical and clinical outcomes will be measured at baseline and 15 minutes after the single treatment session. DISCUSSION: Despite PBMT be used in musculoskeletal disorders such as LBP, to the best of our knowledge this is the first study that will investigate a possible biological mechanism behind the positive clinical effects of PBMT on non-specific chronic low back pain. ETHICS AND DISSEMINATION: The study was approved by the Regional Research Ethics Committee. The results will be disseminated through publication in peer-reviewed international journal and conferences. TRIAL REGISTRATION NUMBER: NCT03859505.


Asunto(s)
Dolor Crónico/inmunología , Dolor Crónico/terapia , Dolor de la Región Lumbar/inmunología , Dolor de la Región Lumbar/terapia , Terapia por Luz de Baja Intensidad , Adulto , Protocolos Clínicos , Dinoprostona/metabolismo , Método Doble Ciego , Femenino , Humanos , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Selección de Paciente , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...