Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nano Lett ; 14(10): 5528-32, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25153997

RESUMEN

Most of current techniques used for the quantification of protein-protein interactions require the analysis of one pair of binding partners at a time. Herein we present a label-free, simple, fast, and cost-effective route to characterize binding affinities between multiple macromolecular partners simultaneously, using optical dark-field spectroscopy and individual protein-functionalized gold nanorods as sensing elements. Our NanoSPR method could easily become a simple and standard tool in biological, biochemical, and medical laboratories.


Asunto(s)
Oro/química , Nanotubos/química , Mapeo de Interacción de Proteínas/métodos , Resonancia por Plasmón de Superficie/métodos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas/economía , Resonancia por Plasmón de Superficie/economía
2.
Mol Membr Biol ; 31(1): 37-45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24328791

RESUMEN

Transmembrane b-type cytochromes, which are crucially involved in electron transfer chains, bind one or more heme (Fe-protoporphyrin IX) molecules non-covalently. Similarly, chlorophylls are typically also non-covalently bound by several membrane integral polypeptides involved in photosynthesis. While both, chlorophyll and heme, are tetrapyrrole macrocycles, they have different substituents at the tetrapyrrole ring moiety. Furthermore, the central metal ion is Mg(2+) in chlorophyll and Fe(2+/3+) in heme. As heme and chlorophyll a have similar structures and might both be ligated by two histidine residues of a polypeptide chain, and as the local concentration of chlorophyll a might be up to 100-times higher than the concentration of heme, the question arises, as to how an organism ensures specific binding of heme, but not of chlorophyll, to transmembrane apo-cytochromes involved in photosynthetic electron transfer reactions. As shown here, Fe-protoporphyrin IX derivatives with modified substituents at the tetrapyrrole ring moiety still bind to an apo-cytochrome; however, association appears to be reduced. This indicates that hydrophobic and polar interactions of the ring substituents with the protein moiety stabilize the protein/heme-complex but are not essential per se. However, removal or replacement of the central Fe-ion completely abolishes formation of a holo-protein complex, and thus the central iron ion appears to determine heme binding to apo-cytochrome b6.


Asunto(s)
Citocromos b , Protoporfirinas , Hemo , Hierro , Magnesio , Modelos Moleculares
3.
Methods Mol Biol ; 1063: 57-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23975772

RESUMEN

In recent years several systems have been developed to study interactions of TM domains within the inner membrane of the Gram-negative bacterium Escherichia coli. Mostly, a transmembrane domain of interest is fused to a soluble DNA-binding domain, which dimerizes in E. coli cytoplasm after interactions of the transmembrane domains. The dimeric DNA-binding domain subsequently binds to a promoter/operator region and thereby activates or represses a reporter gene. In 1996 the first bacterial system has been introduced to measure interactions of TM helices within a bacterial membrane, which is based on fusion of a transmembrane helix of interest to the DNA-binding domain of the Vibrio cholerae ToxR protein. Interaction of a transmembrane helix of interest within the membrane environment results in dimerization of the DNA-binding domain in the bacterial cytoplasm, and the dimeric DNA-binding domain then binds to the DNA and activates a reporter gene. Subsequently, systems with improved features, such as the TOXCAT- or POSSYCCAT system, which allow screening of TM domain libraries, or the GALLEX system, which allows measuring heterotypic interactions of TM helices, have been developed and successfully applied. Here we briefly introduce the currently most applied systems and discuss their advantages together with their limitations.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cloranfenicol O-Acetiltransferasa/metabolismo , Clonación Molecular , Técnicas de Cultivo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Estructura Terciaria de Proteína , Hidróxido de Sodio/química , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transformación Bacteriana , beta-Galactosidasa/metabolismo
4.
Biochim Biophys Acta ; 1818(9): 2103-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22525600

RESUMEN

When localized adjacent to a Pro-kink, Thr and Ser residues can form hydrogen bonds between their polar hydroxyl group and a backbone carbonyl oxygen and thereby modulate the actual bending angle of a distorted transmembrane α-helix. We have used the homo-dimeric transmembrane cytochrome b(559)' to analyze the potential role of a highly conserved Ser residue for assembly and stabilization of transmembrane proteins. Mutation of the conserved Ser residue to Ala resulted in altered heme binding properties and in increased stability of the holo-protein, most likely by tolerating subtle structural rearrangements upon heme binding. The results suggest a crucial impact of an intrahelical Ser hydrogen bond in defining the structure of a Pro-kinked transmembrane helix dimer.


Asunto(s)
Serina/química , Membrana Celular/metabolismo , Grupo Citocromo b/química , Dimerización , Hemo/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Mutación , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Prolina/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrofotometría/métodos
5.
Int J Cancer ; 129(1): 122-32, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20824698

RESUMEN

Tumor-associated macrophages (TAMs) represent alternatively activated (M2) macrophages that support tumor growth. Previously, we have described a special LYVE-1(+) M2 TAM subset in vitro and in vivo; gene profiling of this TAM subset identified MS4A8A as a novel TAM molecule expressed in vivo by TAM in mammary carcinoma and malignant melanoma. In vitro, Ms4a8a mRNA and MS4A8A protein expression was strongly induced in bone marrow-derived macrophages (BMDMs) by combining M2 mediators (IL-4, glucocorticoids) and tumor-conditioned media (TCM). Admixture of MS4A8A(+) TCM/IL-4/GC-treated BMDM significantly enhanced the tumor growth rate of subcutaneously transplanted TS/A mammary carcinomas. Upon forced overexpression of MS4A8A, Raw 264.7 macrophage-like cells displayed a special gene signature. Admixture of these MS4A8A(+) Raw 264.7 cells also significantly enhanced the tumor growth rate of subcutaneously transplanted mammary carcinomas. To identify the signaling pathways involved in synergistic induction of MS4A8A, the major signaling cascades with known functions in TAM were analyzed. Although inhibitors of NF-κB activation and of the MAPK JNK and ERK did not show relevant effects, the p38α/ß MAPK inhibitor SB203580 strongly and highly significantly (p > 0.001) inhibited MS4A8A expression on mRNA and protein level. In addition, MS4A8A expression was restricted in M2 BMDM from mice with defective GC receptor (GR) dimerization indicating that classical GR gene regulation is mandatory for MS4A8A induction. In conclusion, expression of MS4A8A within the complex signal integration during macrophage immune responses may act to fine tune gene regulation. Furthermore, MS4A8A(+) TAM may serve as a novel cellular target for selective cancer therapy.


Asunto(s)
Antígenos CD20/inmunología , Glucocorticoides/metabolismo , Macrófagos/inmunología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Medios de Cultivo Condicionados , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Glucocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Mol Biol ; 404(5): 773-7, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20970426

RESUMEN

The exact mechanism of action of anesthetics is still an open question. While some observations suggest specific anesthetic-protein interactions, nonspecific perturbation of the lipid bilayer has also been suggested. Perturbations of bilayer properties could subsequently affect the structure and function of membrane proteins. Addition of the local anesthetic phenylethanol (PEtOH) to model membranes and intact Escherichia coli cells not only affected membrane fluidity but also severely altered the defined helix-helix interaction within the membrane. This experimental observation suggests that certain anesthetics modulate membrane physical properties and thereby indirectly affect transmembrane (TM) helix-helix interactions, which are not only involved in membrane protein folding and assembly but also important for TM signaling.


Asunto(s)
Anestésicos Locales/metabolismo , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Alcohol Feniletílico/metabolismo , Multimerización de Proteína/efectos de los fármacos , Anestésicos Locales/farmacología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Modelos Biológicos , Alcohol Feniletílico/farmacología , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...