Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; : 1-8, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067262

RESUMEN

The mdx mouse is an experimental model of Duchenne muscular dystrophy, a genetic disorder characterized by progressive muscular degeneration which affects the oral cavity musculature, and promotes difficulty in swallowing. This study aimed to describe morphological, structural, and ultrastructural changes in the tongue mucosa and musculature of mdx mice. Forty six-month-old mice were divided into two groups: Control C57bl/10 (n = 20) and mdx C57bl/10mdx (n = 20). The tongue was dissected and analyzed with light microscopy, scanning electron microscopy, and transmission electron microscopy techniques. Our results showed conical and triangular filiform, fungiform, foliate, and vallate papillae, and their connective tissue cores. The epithelium layers identified were corneum, granulosum, spinosum, and basale. The mdx group had a thicker epithelium. Lamina propria was composed of reddish and greenish collagen. In mdx, collagen was present in the musculature of the tongue's body and in the muscular tissue between mucous and serous glands of the caudal region. Musculature was also characterized by a shorter length of sarcoplasmic invaginations, myocytolysis in mitochondrial groupings, and inflammatory focus. In conclusion, the tongue of 6-month-old mdx mice had morphology, structure, and ultrastructure revealed, showing higher wear of filiform papillae indirect reflex from the muscular degeneration process.

2.
Microsc Res Tech ; 84(8): 1621-1627, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33576550

RESUMEN

The morphology of the oral cavity of mammals relates to diet, habitat, and function. The palate is an important region with adaptations for oral somatosensation and mechanical loads due to the pressure of the tongue with food. The research aimed to describe the structural and ultrastructural characteristics of the epithelium and the connective tissue cores of the guinea pig palate using macroscopic, light microscopy, scanning electron microscopy, and transmission electron microscopy analysis. The hard palate had conical and filiform papillae, and the soft palate had open salivary ducts. After the removal of the epithelium, the connective tissue cores revealed thin filaments and laminar projections in the hard palate, and opening ducts were evidenced in the soft palate. The palatine epithelium was keratinized and organized by layers, lamellated corpuscles were found in lamina propria of the hard palate. In contrast, the soft palate had glands clusters associated with nerve fibers, and in both regions were identified telocytes. We concluded that the hard palate presented conical and filiform papillae that differ from other mammals. Besides, it is a new description of the connective tissue cores morphology and the first record of the telocytes in this anatomical region for mammals.


Asunto(s)
Hueso Paladar , Telocitos , Animales , Tejido Conectivo , Epitelio , Cobayas , Microscopía Electrónica de Rastreo , Lengua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...