Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Toxicol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581179

RESUMEN

Neonicotinoids are insecticides widely used in the world. Although neonicotinoids are believed to be toxic only to insects, their developmental neurotoxicity in mammals is a concern. Therefore, we examined the effects of developmental exposure to neonicotinoids on immune system in the brain and post-developmental behaviors in this study. Imidacloprid or clothianidin was orally administered to dams at a dosage of 0.1 mg/kg/day from embryonic day 11 to postnatal day 21. Imidacloprid decreased sociability, and both imidacloprid and clothianidin decreased locomotor activity and induced anxiety, depression and abnormal repetitive behaviors after the developmental period. There was no change in the number of neurons in the hippocampus of mice exposed to imidacloprid. However, the number and activity of microglia during development were significantly decreased by imidacloprid exposure. Imidacloprid also induced neural circuit dysfunction in the CA1 and CA3 regions of the hippocampus during the early postnatal period. Exposure to imidacloprid suppressed the expression of csf1r during development. Collectively, these results suggest that developmental exposure to imidacloprid decreases the number and activity of microglia, which can cause neural circuit dysfunction and abnormal behaviors after the developmental period. Care must be taken to avoid exposure to neonicotinoids, especially during development.

2.
J Physiol Sci ; 74(1): 16, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475711

RESUMEN

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABAB receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application. Oscillations comprised a non-NMDA receptor-dependent initial phase and a later NMDA receptor-dependent oscillatory phase, with the oscillator located in the upper layer of the OSC. Baclofen was applied to investigate the actions of GABAB receptors. The later NMDA receptor-dependent oscillatory phase completely disappeared, but the initial phase did not. These results suggest that GABAB receptors mainly act on NMDA receptor, in which metabotropic actions of GABAB receptors may contribute to the attenuation of NMDA receptor activities. A regulatory system for network oscillation involving GABAB receptors may be present in the OSC.


Asunto(s)
Receptores de GABA-B , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de GABA-B/metabolismo , Corteza Somatosensorial/metabolismo , Baclofeno
3.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977827

RESUMEN

Prefrontal cortex (PFC) intrahemispheric activity and the interhemispheric connection have a significant impact on neuropsychiatric disorder pathology. This study aimed to generate a functional map of FC intrahemispheric and interhemispheric connections. Functional dissection of mouse PFCs was performed using the voltage-sensitive dye (VSD) imaging method with high speed (1 ms/frame), high resolution (256 × 256 pixels), and a large field of view (∼10 mm). Acute serial 350 µm slices were prepared from the bregma covering the PFC and numbered 1-5 based on their distance from the bregma (i.e., 1.70, 1.34, 0.98, 0.62, and 0.26 mm) with reference to the Mouse Brain Atlas (Paxinos and Franklin, 2008). The neural response to electrical stimulation was measured at nine sites and then averaged, and a functional map of the propagation patterns was created. Intracortical propagation was observed in slices 3-5, encompassing the anterior cingulate cortex (ACC) and corpus callosum (CC). The activity reached area 33 of the ACC. Direct white matter stimulation activated area 33 in both hemispheres. Similar findings were obtained via DiI staining of the CC. Imaging analysis revealed directional biases in neural signals traveling within the ACC, whereby the signal transmission speed and probability varied based on the signal direction. Specifically, the spread of neural signals from cg2 to cg1 was stronger than that from cingulate cortex area 1(cg1) to cingulate cortex area 2(cg2), which has implications for interhemispheric functional connections. These findings highlight the importance of understanding the PFC functional anatomy in evaluating neuromodulators like serotonin and dopamine, as well as other factors related to neuropsychiatric diseases.


Asunto(s)
Cuerpo Calloso , Imagen de Colorante Sensible al Voltaje , Ratones , Animales , Cuerpo Calloso/fisiología , Giro del Cíngulo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Serotonina , Vías Nerviosas/fisiología
4.
Biophys Physicobiol ; 20(2): e200025, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37867561

RESUMEN

In Paramecium, a mechanical stimulus applied to the posterior portion of the cell causes a transient increase in membrane permeability to potassium ions, transiently rendering the membrane in a hyperpolarized state. Hyperpolarization causes a transient increase in Cyclic adenosine monophosphate (cAMP) concentration in the cilia, resulting in a transient fast-forward swimming of the cell. Schultz and coworkers (1992) reported that a unique adenylate cyclase (AC)-coupled potassium channel is involved in the reaction underlying this response, which is known as the "escape response." However, the AC responsible for this reaction remains to be identified. Moreover, the molecular linkage between mechanoreception and AC activation has not been elucidated adequately. Currently, we can perform an efficient and simple gene-knockdown technique in Paramecium using RNA interference (RNAi). Paramecium is one of the several model organisms for which whole-genome sequences have been elucidated. The RNAi technique can be applied to whole genome sequences derived from the Paramecium database (ParameciumDB) to investigate the types of proteins that elicit specific biological responses and compare them with those of other model organisms. In this review, we describe the applications of the RNAi technique in elucidating the molecular mechanism underlying the escape response and identifying the AC involved in this reaction. The findings of this study highlight the advantages of the RNAi technique and ParameciumDB.

5.
Front Cell Neurosci ; 17: 1217368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680865

RESUMEN

Non-clinical toxicology is a major cause of drug candidate attrition during development. In particular, drug-induced seizures are the most common finding in central nervous system (CNS) toxicity. Current safety pharmacology tests for assessing CNS functions are often inadequate in detecting seizure-inducing compounds early in drug development, leading to significant delays. This paper presents an in vitro seizure liability assay using voltage-sensitive dye (VSD) imaging techniques in hippocampal brain slices, offering a powerful alternative to traditional electrophysiological methods. Hippocampal slices were isolated from mice, and VSD optical responses evoked by stimulating the Schaffer collateral pathway were recorded and analyzed in the stratum radiatum (SR) and stratum pyramidale (SP). VSDs allow for the comprehensive visualization of neuronal action potentials and postsynaptic potentials on a millisecond timescale. By employing this approach, we investigated the in vitro drug-induced seizure liability of representative pro-convulsant compounds. Picrotoxin (PiTX; 1-100 µM), gabazine (GZ; 0.1-10 µM), and 4-aminopyridine (4AP; 10-100 µM) exhibited seizure-like responses in the hippocampus, but pilocarpine hydrochloride (Pilo; 10-100 µM) did not. Our findings demonstrate the potential of VSD-based assays in identifying seizurogenic compounds during early drug discovery, thereby reducing delays in drug development and providing insights into the mechanisms underlying seizure induction and the associated risks of pro-convulsant compounds.

6.
Biophys Physicobiol ; 20(1): e200015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448592

RESUMEN

Plasticity is the key feature of our brain function. Specifically, plasticity of hippocampal synapses is critical for learning and memory. The functional properties of the neuronal circuit change as a result of synaptic plasticity. This review summarizes the use of voltage-sensitive dyes (VSDs) to examine neuronal circuit plasticity. We will discuss the significance of plastic changes in circuit function as well as the technical issue of using VSDs. Further, we will discuss the neural circuit level plasticity of the hippocampus caused by long-term potentiation and the entorhinal-perirhinal connection. This review article is an extended version of the Japanese article, Membrane Potential Imaging with Voltage-sensitive Dye (VSD) for Long-term Recording, published in SEIBUTSU BUTSURI Vol. 61, p. 404-408 (2021).

7.
J Toxicol Sci ; 48(4): 211-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005279

RESUMEN

Products used in daily life contain multiple chemicals capable of inducing endocrine disruption in animals, including humans. One such typical substance is bisphenol A (BPA). BPA has been widely used in epoxy resins and polycarbonate plastics and can exert several adverse effects. Furthermore, given their structural similarity to BPA, phenolic analogs of BPA, i.e., synthetic phenolic antioxidants (SPAs), are considered to exhibit similar toxicity; however, the effects of early SPA exposure on the adult central nervous system remain poorly clarified. In the present study, we aimed to evaluate and compare the neurobehavioral effects of early life exposure to BPA and two selected SPAs, 4,4'-butylidenebis (6-tert-butyl-m-cresol) (BB) and 2,2'-methylenebis (6-tert-butyl-p-cresol) (MB). We exposed mice to low levels of these chemicals through drinking water during prenatal and postnatal periods. Subsequently, we examined the adverse effects of these chemicals on the central nervous system using a mouse behavioral test battery, comprising the open field test, light/dark transition test, elevated plus-maze test, contextual/cued fear conditioning test, and prepulse inhibition test, at 12-13 weeks old. Based on the behavioral analysis, SPAs, like BPA, may cause affective disorders even at low doses, although qualitative differences were noted in anxiety-related behaviors. In conclusion, our findings could be valuable for clarifying the potential adverse developmental risks of SPA exposure in early life.


Asunto(s)
Disruptores Endocrinos , Efectos Tardíos de la Exposición Prenatal , Embarazo , Animales , Femenino , Humanos , Masculino , Conducta Animal , Ansiedad/inducido químicamente , Ansiedad/psicología , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad
8.
J Toxicol Sci ; 48(3): 149-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858640

RESUMEN

Reportedly, antibiotics, which are frequently prescribed in children, have long-term effects owing to gut microbiota dysregulation. Tosufloxacin tosilate hydrate (TFLX) is the first orally administered new quinolone with high efficacy and broad-spectrum action approved as an antibacterial agent for pediatric use in Japan. However, studies on the effects of its early-stage administration are limited. Therefore, we aimed to analyze the later effects of its developmental administration by monitoring growth rate, neurobehavior, and gut microbiota in mice. The TFLX was administered via drinking water at a dose of up to 300 mg/kg for two consecutive weeks during the developmental period (4-6 weeks of age) or adulthood (8-10 weeks of age). Thereafter, the body weights of the mice were measured weekly to monitor growth rate. Behavioral tests were also conducted on 11-12-week-old mice to examine the neurobehavioral effects of the treatment. Further, to examine the effects of the treatment on microbiota, fecal samples were collected from the rectum of mice dissected at 12 weeks of age, and 16s rRNA analysis was conducted. Our results showed increased body weights after TFLX administration, without any long-term effects. Behavioral analysis suggested alterations in anxiety-like behaviors and memory recall dysregulation, and gut microbiota analysis revealed significant differences in bacterial composition. These findings indicated that TFLX administration during the developmental period affects mice growth rate, neurobehavior, and gut microbiota structure. This is the first study to report that TFLX is potentially associated with the risk of long effects.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Animales , Ratones , ARN Ribosómico 16S , Fluoroquinolonas , Peso Corporal
9.
Neurosci Res ; 191: 28-37, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36642104

RESUMEN

Information integration in the brain requires functional connectivity between local neural networks. Here, we investigated the interregional coupling mechanism from the viewpoint of oscillations using optical recording methods. Low-frequency electrical stimulation of rat neocortical slices in a caffeine-containing medium induced oscillatory activity between the primary visual cortex (Oc1) and medial secondary visual cortex (Oc2M), in which the oscillation generator was located in the Oc2M and was triggered by a feedforward signal. During to-and-fro oscillatory activity, neural excitation was marked in layer II/III. When the upper layer was disrupted between Oc1 and Oc2M, feedforward signals could propagate through the deep layer and switch on the oscillator in the Oc2M. When the lower layer was disrupted between Oc1 and Oc2M, feedforward signals could propagate through the upper layer and switch on the oscillator in the Oc2M. In the backward direction, neither the upper layer cut nor the lower layer cut disrupted the propagation of the oscillations. In all cases, the horizontal and vertical pathways were used as needed. Fluctuations in the oscillatory waveforms of the local field potential at the upper and lower layers in the Oc2M were reversed, suggesting that the oscillation originated between the two layers. Thus, the neocortex may work as a safety device for interregional communications in an alternative way to drive voltage oscillators in the neocortex.


Asunto(s)
Neocórtex , Ratas , Animales , Ratas Wistar , Cafeína/farmacología , Estimulación Eléctrica
10.
J Neuroinflammation ; 19(1): 195, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906621

RESUMEN

BACKGROUND: Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS: Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS: Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION: These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno del Espectro Autista/inducido químicamente , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Maraviroc/uso terapéutico , Maraviroc/toxicidad , Ratones , Minociclina/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Receptores CCR5/genética , Ácido Valproico/toxicidad
11.
J Eukaryot Microbiol ; 68(3): e12843, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33501744

RESUMEN

In a ciliate Paramecium, the presence of water channels on the membrane of contractile vacuole has long been predicted by both morphological and physiological data, however, to date either the biochemical or the molecular biological data have not been provided. In the present study, to examine the presence of aquaporin in Paramecium, we carried out RT-PCR with degenerated primers designed based on the ParameciumDB, and an aquaporin cDNA (aquaporin 1, aqp1) with a full-length ORF encoding 251 amino acids was obtained from Paramecium multimicronucleatum by using RACE. The deduced amino acid sequence of AQP1 had NPA-NPG motifs, and the prediction of protein secondary structure by CNR5000 and hydropathy plot showed the presence of six putative transmembrane domains and five connecting loops. Phylogenetic analysis results showed that the amino acid sequence of AQP1 was close to that of the Super-aquaporin group. The AQP1-GFP fusion protein clearly demonstrated the subcellular localization of AQP1 on the contractile vacuole complex, except for the decorated spongiome membrane. The functional analyses of aqp1 were done by RNA interference-based gene silencing, using an established feeding method. The aqp1 was found to be crucial for the total fluid output of the cell, the function of contractile vacuole membranes.


Asunto(s)
Paramecium , Secuencia de Aminoácidos , Acuaporina 1/genética , Paramecium/genética , Filogenia , Vacuolas
12.
Bioessays ; 43(3): e2000084, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236360

RESUMEN

In several experimental conditions, neuronal excitation at the perirhinal cortex (PC) does not propagate to the entorhinal cortex (EC) due to a "wall" of inhibition, which may help to create functional coupling and un-coupling of the PC and EC in the medial temporal lobe. However, little is known regarding the coupling control process. Herein, we propose that the deep layer of area 35 in the PC plays a pivotal role in opening the gate for coupling, thus allowing the activity in the PC to propagate to the EC. Using voltage-sensitive dye imaging for the brain slices of rodents, we show that a slowly inactivating potassium conductance in this area is essential to induce excitation overtaking the inhibitory control. This coupling between the distinct neural circuits persists for at least 1 h. We elucidate further implications of this network-level plastic behavior and its mechanism.


Asunto(s)
Corteza Perirrinal , Corteza Entorrinal , Hipocampo , Canales de Potasio
13.
Acta Neuropathol Commun ; 8(1): 206, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256836

RESUMEN

The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.


Asunto(s)
Moléculas de Adhesión Celular/genética , Corteza Entorrinal/patología , Neuronas GABAérgicas/patología , Convulsiones/genética , Animales , Electroencefalografía , Predisposición Genética a la Enfermedad , Excitación Neurológica/genética , Ratones , Ratas , Ratas Mutantes
14.
Front Neural Circuits ; 14: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581725

RESUMEN

cAMP is a positive regulator tightly involved in certain types of synaptic plasticity and related memory functions. However, its spatiotemporal roles at the synaptic and neural circuit levels remain elusive. Using a combination of a cAMP optogenetics approach and voltage-sensitive dye (VSD) imaging with electrophysiological recording, we define a novel capacity of postsynaptic cAMP in enabling dentate gyrus long-term potentiation (LTP) and depolarization in acutely prepared murine hippocampal slices. To manipulate cAMP levels at medial perforant path to granule neuron (MPP-DG) synapses by light, we generated transgenic (Tg) mice expressing photoactivatable adenylyl cyclase (PAC) in DG granule neurons. Using these Tg(CMV-Camk2a-RFP/bPAC)3Koka mice, we recorded field excitatory postsynaptic potentials (fEPSPs) from MPP-DG synapses and found that photoactivation of PAC during tetanic stimulation enabled synaptic potentiation that persisted for at least 30 min. This form of LTP was induced without the need for GABA receptor blockade that is typically required for inducing DG plasticity. The paired-pulse ratio (PPR) remained unchanged, indicating the cAMP-dependent LTP was likely postsynaptic. By employing fast fluorescent voltage-sensitive dye (VSD: di-4-ANEPPS) and fluorescence imaging, we found that photoactivation of the PAC actuator enhanced the intensity and extent of dentate gyrus depolarization triggered following tetanic stimulation. These results demonstrate that the elevation of cAMP in granule neurons is capable of rapidly enhancing synaptic strength and neuronal depolarization. The powerful actions of cAMP are consistent with this second messenger having a critical role in the regulation of synaptic function.


Asunto(s)
AMP Cíclico/fisiología , Giro Dentado/química , Giro Dentado/fisiología , Plasticidad Neuronal/fisiología , Optogenética/métodos , Potenciales Sinápticos/fisiología , Animales , AMP Cíclico/análisis , Hipocampo/química , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Periodo Refractario Electrofisiológico/fisiología , Transmisión Sináptica/fisiología
15.
J Eukaryot Microbiol ; 67(5): 532-540, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32379929

RESUMEN

Paramecium shows rapid forward swimming due to increased beat frequency of cilia in normal (forward swimming) direction in response to various kinds of stimuli applied to the cell surface that cause K+ -outflow accompanied by a membrane hyperpolarization. Some adenylate cyclases are known to be functional K+ channels in the membrane. Using gene-specific knockdown methods, we examined nine paralogues of adenylate cyclases in P. tetraurelia to ascertain whether and how they are involved in the mechanical stimulus-induced hyperpolarization-coupled acceleration of forward swimming. Results demonstrated that knockdown of the adenylate cyclase 1 (ac1)-gene and 2 (ac2)-gene inhibited the acceleration of forward swimming in response to mechanical stimulation of the cell, whereas that spared the acceleration response to external application of 8-Br-cAMP and dilution of extracellular [K+ ] induced hyperpolarization. Electrophysiological examination of the knockdown cells revealed that the hyperpolarization-activated inward K+ current is smaller than that of a normal cell. Our results suggest that AC1 and AC2 are involved in the mechanical stimulus-induced acceleration of ciliary beat in Paramecium.


Asunto(s)
Adenilil Ciclasas/genética , Cilios/fisiología , Paramecium/fisiología , Proteínas Protozoarias/genética , Adenilil Ciclasas/metabolismo , Fenómenos Biomecánicos , Paramecium/enzimología , Paramecium/genética , Filogenia , Proteínas Protozoarias/metabolismo
16.
Biophys J ; 118(10): 2366-2384, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32294480

RESUMEN

Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.


Asunto(s)
Hipocampo , Microscopía , Animales , Birrefringencia , Dendritas , Técnicas In Vitro , Ratones
18.
J Appl Toxicol ; 39(12): 1651-1662, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31415104

RESUMEN

Permethrin, a pyrethroid chemical, is widely used as a pesticide because of its rapid insecticidal activity. Although permethrin is considered to exert very low toxicity in mammals, the effects of early, low-level, chronic exposure on the adult central nervous system are unclear. In this study, we investigated the effects of low-level, chronic permethrin exposure in early life on the brain functions of adult mice, using environmentally relevant concentrations. We exposed mice to the acceptable daily intake level of permethrin (0.3 ppm) in drinking water during the prenatal and postnatal periods. We then examined the effects on the central nervous system in adult male offspring. In the permethrin group, we detected behavior that displayed incomplete adaptation to a novel environment, as well as an impairment in learning and memory. In addition, immunohistochemical analysis revealed an increase in doublecortin- (an immature neuron marker) positive cells in the hippocampal dentate gyrus in the permethrin exposure group compared with the control group. Additionally, in the permethrin exposure group there was a decrease in astrocyte number in the hilus of the dentate gyrus, and remaining astrocytes were often irregularly shaped. These results suggest that exposure to permethrin at low levels in early life affects the formation of the neural circuit base and behavior after maturation. Therefore, in the central nervous system of male mice, low-level, chronic permethrin exposure during the prenatal and postnatal periods has effects that were not expected based on the known effects of permethrin exposure in mature animals.


Asunto(s)
Insecticidas/toxicidad , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Permetrina/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Neuroglía/patología , Neuronas/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología
19.
J Vis Exp ; (148)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31282882

RESUMEN

Wide-field single photon voltage-sensitive dye (VSD) imaging of brain slice preparations is a useful tool to assess the functional connectivity in neural circuits. Due to the fractional change in the light signal, it has been difficult to use this method as a quantitative assay. This article describes special optics and slice handling systems, which render this technique stable and reliable. The present article demonstrates the slice handling, staining, and recording of the VSD-stained hippocampal slices in detail. The system maintains physiological conditions for a long time, with good staining, and prevents mechanical movements of the slice during the recordings. Moreover, it enables staining of slices with a small amount of the dye. The optics achieve high numerical aperture at low magnification, which allows recording of the VSD signal at the maximum frame rate of 10 kHz, with 100 pixel x 100-pixel spatial resolution. Due to the high frame rate and spatial resolution, this technique allows application of the post-recording filters that provide sufficient signal-to-noise ratio to assess the changes in neural circuits.


Asunto(s)
Hipocampo/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo , Neuronas/fisiología , Fotones , Relación Señal-Ruido
20.
Front Cell Neurosci ; 13: 20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804757

RESUMEN

The rhinal cortices, such as the perirhinal cortex (PC) and the entorhinal cortex (EC), are located within the bidirectional pathway between the neocortex and the hippocampus. Physiological studies indicate that the perirhinal transmission of neocortical inputs to the EC occurs at an extremely low probability, though many anatomical studies indicated strong connections exist in the pathway. Our previous study in rat brain slices indicated that an increase in excitability in deep layers of the PC/EC border initiated the neural activity transfer from the PC to the EC. In the present study, we hypothesized that such changes in network dynamics are not incidental observations but rather due to the plastic features of the perirhinal network, which links with the EC. To confirm this idea, we analyzed the network properties of neural transmission throughout the rhinal cortices and the plastic behavior of the network by performing a single-photon wide-field optical recording technique with a voltage-sensitive dye (VSD) in mouse brain slices of the PC, the EC, and the hippocampus. The low concentration of 4-aminopyridine (4-AP; 40 µM) enhanced neural activity in the PC, which eventually propagated to the EC via the deep layers of the PC/EC border. Interestingly, washout of 4-AP was unable to reverse entorhinal activation to the previous state. This change in the network property persisted for more than 1 h. This observation was not limited to the application of 4-AP. Burst stimulation to neurons in the perirhinal deep layers also induced the same change of network property. These results indicate the long-lasting modification of physiological connection between the PC and the EC, suggesting the existence of plasticity in the perirhinal-entorhinal network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...