Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Br J Pharmacol ; 180(1): 94-110, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36068079

RESUMEN

BACKGROUND AND PURPOSE: Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH: Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS: Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS: Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Ratones , Animales , Isquemia/metabolismo , Miocitos del Músculo Liso/metabolismo , Canal Catiónico TRPC6 , Ratones Noqueados , Canales Catiónicos TRPC/metabolismo
2.
J Gen Physiol ; 154(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36318155

RESUMEN

In skeletal muscle excitation-contraction (E-C) coupling, depolarization of the plasma membrane triggers Ca2+ release from the sarcoplasmic reticulum (SR), referred to as depolarization-induced Ca2+ release (DICR). DICR occurs through the type 1 ryanodine receptor (RyR1), which physically interacts with the dihydropyridine receptor Cav1.1 subunit in specific machinery formed with additional essential components including ß1a, Stac3 adaptor protein, and junctophilins. Exome sequencing has accelerated the discovery of many novel mutations in genes encoding DICR machinery in various skeletal muscle diseases. However, functional validation is time-consuming because it must be performed in a skeletal muscle environment. In this study, we established a platform of the reconstituted DICR in HEK293 cells. The essential components were effectively transduced into HEK293 cells expressing RyR1 using baculovirus vectors, and Ca2+ release was quantitatively measured with R-CEPIA1er, a fluorescent ER Ca2+ indicator, without contaminant of extracellular Ca2+ influx. In these cells, [K+]-dependent Ca2+ release was triggered by chemical depolarization with the aid of inward rectifying potassium channel, indicating a successful reconstitution of DICR. Using the platform, we evaluated several Cav1.1 mutations that are implicated in malignant hyperthermia and myopathy. We also tested several RyR1 inhibitors; whereas dantrolene and Cpd1 inhibited DICR, procaine had no effect. Furthermore, twitch potentiators such as perchlorate and thiocyanate shifted the voltage dependence of DICR to more negative potentials without affecting Ca2+-induced Ca2+ release. These results well reproduced the findings with the muscle fibers and the cultured myotubes. Since the procedure is simple and reproducible, the reconstituted DICR platform will be highly useful for the validation of mutations and drug discovery for skeletal muscle diseases.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Células HEK293 , Retículo Sarcoplasmático/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canales de Calcio Tipo L/metabolismo , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutación , Descubrimiento de Drogas
3.
Nat Commun ; 13(1): 6374, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289215

RESUMEN

Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates ß-adrenoceptor (ßAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated ßAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting ß-arrestin-mediated ßAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Canales Catiónicos TRPC , Ratas , Animales , Ratones , Canal Catiónico TRPC6 , Canales Catiónicos TRPC/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Insuficiencia Cardíaca/metabolismo , beta-Arrestinas/metabolismo , Aminoácidos/metabolismo , Zinc/metabolismo
4.
Cells ; 11(13)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35805125

RESUMEN

Retarded revascularization after progressive occlusion of large conductance arteries is a major cause of bad prognosis for peripheral artery disease (PAD). However, pharmacological treatment for PAD is still limited. We previously reported that suppression of transient receptor potential canonical (TRPC) 6 channel activity in vascular smooth muscle cells (VSMCs) facilitates VSMC differentiation without affecting proliferation and migration. In this study, we found that 1-benzilpiperadine derivative (1-BP), a selective inhibitor for TRPC3 and TRPC6 channel activities, induced VSMC differentiation. 1-BP-treated mice showed increased capillary arterialization and improvement of peripheral circulation and skeletal muscle mass after hind-limb ischemia (HLI) in mice. 1-BP had no additive effect on the facilitation of blood flow recovery after HLI in TRPC6-deficient mice, suggesting that suppression of TRPC6 underlies facilitation of the blood flow recovery by 1-BP. 1-BP also improved vascular nitric oxide bioavailability and blood flow recovery after HLI in hypercholesterolemic mice with endothelial dysfunction, suggesting the retrograde interaction from VSMCs to endothelium. These results suggest that 1-BP becomes a potential seed for PAD treatments that target vascular TRPC6 channels.


Asunto(s)
Isquemia , Miocitos del Músculo Liso , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo , Animales , Arterias , Isquemia/tratamiento farmacológico , Ratones , Músculo Esquelético
5.
Am J Physiol Heart Circ Physiol ; 323(1): H103-H120, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594067

RESUMEN

Mammalian ventricular cardiomyocytes are premature at birth and exhibit substantial phenotypic changes before weaning. Mouse ventricular myocytes undergo cell division several times after birth; however, the regulatory mechanisms and roles of cardiomyocyte division in postnatal heart development remain unclear. Here, we investigated the physiological role of glycoprotein 130 (gp130), the main subunit of multifunctional receptors for the IL-6 family of cytokines, in postnatal cardiomyocyte proliferation. Pharmacological inhibition of gp130 within the first month after birth induced significant systolic dysfunction of the left ventricle in mice. Consistently, mice with postnatal cardiomyocyte-specific gp130 depletion exhibited impaired left ventricular contractility compared with control mice. In these mice, cardiomyocytes exhibited a moderately decreased size and dramatically inhibited proliferation in the left ventricle but not in the right ventricle. Stereological analysis revealed that this change significantly decreased the number of cardiomyocytes in the left ventricle. Furthermore, IL-6 was mainly responsible for promoting ventricular cardiomyocyte proliferation by activating the JAK/STAT3 pathway. Taken together, the IL-6/gp130/JAK/STAT3 axis plays a crucial role in the physiological postnatal proliferation and hypertrophy of left ventricular cardiomyocytes to ensure normal cardiac functional development.NEW & NOTEWORTHY Although cardiomyocytes undergo proliferation in the early postnatal period, the regulatory mechanisms and physiological importance of this process have not been clarified. We found that the pharmacological and genetic depletion of gp130 in preweaning mice resulted in significant impairment of cardiomyocyte proliferation, thinning of the myocardium, and systolic dysfunction of the left but not right ventricle by perturbing JAK/STAT3 signaling. Thus, the IL-6/gp130/JAK/STAT3 axis is crucial for the postnatal functional development of the left ventricle.


Asunto(s)
Interleucina-6 , Miocitos Cardíacos , Animales , Proliferación Celular , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Glicoproteínas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mamíferos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Receptores de Citocinas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Circ Res ; 130(2): 234-248, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34875852

RESUMEN

BACKGROUND: During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however. METHODS: We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant. RESULTS: We found that cardiac expression of Gαo, an inhibitory G protein encoded in humans by GNAO1, is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gαo expression increased surface sarcolemmal L-type Ca2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca2+ handling in ventricular myocytes, which led to cardiac dysfunction. CONCLUSIONS: These findings shed light on a novel function of Gαo in the regulation of cardiac Ca2+ homeostasis and systolic function and suggest Gαo may be an effective therapeutic target for the treatment of heart failure.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras/genética
7.
NPJ Microgravity ; 7(1): 18, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039989

RESUMEN

The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.

8.
NPJ Microgravity ; 7(1): 2, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558517

RESUMEN

Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space.

9.
JACC Basic Transl Sci ; 5(11): 1057-1069, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33294739

RESUMEN

The treatment of pediatric heart failure is a long-standing unmet medical need. Angiotensin II supports mammalian perinatal circulation by activating cardiac L-type Ca2+ channels through angiotensin type 1 receptor (AT1R) and ß-arrestin. TRV027, a ß-arrestin-biased AT1R agonist, that has been reported to be safe but not effective for adult patients with heart failure, activates the AT1R/ß-arrestin pathway. We found that TRV027 evokes a long-acting positive inotropic effect specifically on immature cardiac myocytes through the AT1R/ß-arrestin/L-type Ca2+ channel pathway with minimum effect on heart rate, oxygen consumption, reactive oxygen species production, and aldosterone secretion. Thus, TRV027 could be utilized as a valuable drug specific for pediatric heart failure.

10.
Cells ; 9(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079284

RESUMEN

The heart flexibly changes its structure in response to changing environments and oxygen/nutrition demands of the body. Increased and decreased mechanical loading induces hypertrophy and atrophy of cardiomyocytes, respectively. In physiological conditions, these structural changes of the heart are reversible. However, chronic stresses such as hypertension or cancer cachexia cause irreversible remodeling of the heart, leading to heart failure. Accumulating evidence indicates that calcium dyshomeostasis and aberrant reactive oxygen species production cause pathological heart remodeling. Canonical transient receptor potential (TRPC) is a nonselective cation channel subfamily whose multimodal activation or modulation of channel activity play important roles in a plethora of cellular physiology. Roles of TRPC channels in cardiac physiology have been reported in pathological cardiac remodeling. In this review, we summarize recent findings regarding the importance of TRPC channels in flexible cardiac remodeling (i.e., cardiac plasticity) in response to environmental stresses and discuss questions that should be addressed in the near future.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
11.
Pflugers Arch ; 472(2): 137-153, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707289

RESUMEN

A growing body of evidence suggests that exercise shows pleiotropic effects on the maintenance of systemic homeostasis through mitochondria. Dysregulation of mitochondrial dynamism is associated with metabolic inflexibility, resulting in many of the metabolic diseases and aging. Studies have suggested that exercise prevents and delays the progression of mitochondrial dysfunction by improving mitochondrial metabolism, biogenesis, and quality control. Exercise modulates functions of mitochondrial dynamics-regulating proteins through post-translational modification mechanisms. In this review, we discuss the putative mechanisms underlying maintenance of mitochondrial homeostasis by exercise, especially focusing on the post-translational modifications of several signaling proteins contributing to mitochondrial biogenesis, autophagy or mitophagy flux, and fission/fusion cycle. We also introduce novel small molecules that can potentially mimic exercise therapy through preserving mitochondrial dynamism. These recent advancements in the field of mitochondrial biology may lead to a greater understanding of exercise signaling.


Asunto(s)
Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales , Actividad Motora , Animales , Humanos , Mitofagia
12.
Sci Rep ; 9(1): 9785, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278358

RESUMEN

Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5'-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.


Asunto(s)
Desnutrición/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Atrofia , Biomarcadores , Supervivencia Celular , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Modelos Biológicos , Miocitos Cardíacos/patología , NADPH Oxidasas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
13.
Sci Signal ; 12(587)2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239323

RESUMEN

Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys624, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys624-S(n)H). MeHg exposure induced the depolysulfidation of Cys624-S(n)H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys624-S(n)H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.


Asunto(s)
Dinaminas/metabolismo , Insuficiencia Cardíaca , Hemodinámica/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Mitocondrias Cardíacas , Animales , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
14.
Br J Pharmacol ; 176(18): 3723-3738, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31241172

RESUMEN

BACKGROUND AND PURPOSE: Doxorubicin is a highly effective anticancer agent but eventually induces cardiotoxicity associated with increased production of ROS. We previously reported that a pathological protein interaction between TRPC3 channels and NADPH oxidase 2 (Nox2) contributed to doxorubicin-induced cardiac atrophy in mice. Here we have investigated the effects of ibudilast, a drug already approved for clinical use and known to block doxorubicin-induced cytotoxicity, on the TRPC3-Nox2 complex. We specifically sought evidence that this drug attenuated doxorubicin-induced systemic tissue wasting in mice. EXPERIMENTAL APPROACH: We used the RAW264.7 macrophage cell line to screen 1,271 clinically approved chemical compounds, evaluating functional interactions between TRPC3 channels and Nox2, by measuring Nox2 protein stability and ROS production, with and without exposure to doxorubicin. In male C57BL/6 mice, samples of cardiac and gastrocnemius muscle were taken and analysed with morphometric, immunohistochemical, RT-PCR and western blot methods. In the passive smoking model, cells were exposed to DMEM containing cigarette sidestream smoke. KEY RESULTS: Ibudilast, an anti-asthmatic drug, attenuated ROS-mediated muscle toxicity induced by doxorubicin treatment or passive smoking, by inhibiting the functional interactions between TRPC3 channels and Nox2, without reducing TRPC3 channel activity. CONCLUSIONS AND IMPLICATIONS: These results indicate a common mechanism underlying induction of systemic tissue wasting by doxorubicin. They also suggest that ibudilast could be repurposed to prevent muscle toxicity caused by anticancer drugs or passive smoking.


Asunto(s)
Antineoplásicos/efectos adversos , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , NADPH Oxidasa 2/metabolismo , Piridinas/uso terapéutico , Canales Catiónicos TRPC/metabolismo , Síndrome Debilitante/tratamiento farmacológico , Animales , Cardiotoxicidad/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Piridinas/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Síndrome Debilitante/inducido químicamente , Síndrome Debilitante/metabolismo
15.
FASEB J ; 33(9): 9785-9796, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162976

RESUMEN

Vascular smooth muscle cells (VSMCs) play critical roles in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative synthetic and fully differentiated contractile phenotypes in response to changes in the vessel environment. Although abnormal phenotypic switching of VSMCs is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty, how control of VSMC phenotypic switching is dysregulated in pathologic conditions remains obscure. We found that inhibition of canonical transient receptor potential 6 (TRPC6) channels facilitated contractile differentiation of VSMCs through plasma membrane hyperpolarization. TRPC6-deficient VSMCs exhibited more polarized resting membrane potentials and higher protein kinase B (Akt) activity than wild-type VSMCs in response to TGF-ß1 stimulation. Ischemic stress elicited by oxygen-glucose deprivation suppressed TGF-ß1-induced hyperpolarization and VSMC differentiation, but this effect was abolished by TRPC6 deletion. TRPC6-mediated Ca2+ influx and depolarization coordinately promoted the interaction of TRPC6 with lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of Akt activation. Given the marked up-regulation of TRPC6 observed in vascular disorders, our findings suggest that attenuation of TRPC6 channel activity in pathologic VSMCs could be a rational strategy to maintain vascular quality control by fine-tuning of VSMC phenotypic switching.-Numaga-Tomita, T., Shimauchi, T., Oda, S., Tanaka, T., Nishiyama, K., Nishimura, A., Birnbaumer, L., Mori, Y., Nishida, M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN.


Asunto(s)
Potenciales de la Membrana/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Fosfohidrolasa PTEN/metabolismo , Canal Catiónico TRPC6/metabolismo , Animales , Aorta , Línea Celular , Membrana Celular , Ratones , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canal Catiónico TRPC6/genética
16.
Pflugers Arch ; 471(3): 507-517, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30298191

RESUMEN

Physical exercise yields beneficial effects on all types of muscle cells, which are essential for the maintenance of cardiovascular homeostasis and good blood circulation. Daily moderate exercise increases systemic antioxidative capacity, which can lead to the prevention of the onset and progression of oxidative stress-related diseases. Therefore, exercise is now widely accepted as one of the best therapeutic strategies for the treatment of ischemic (hypoxic) diseases. Canonical transient receptor potential (TRPC) proteins are non-selective cation channels activated by mechanical stress and/or stimulation of phospholipase C-coupled surface receptors. TRPC channels, especially diacylglycerol-activated TRPC channels (TRPC3 and TRPC6; TRPC3/6), play a key role in the development of cardiovascular remodeling. We have recently found that physical interaction between TRPC3 and NADPH oxidase (Nox) 2 under hypoxic stress promotes Nox2-dependent reactive oxygen species (ROS) production and mediates rodent cardiac plasticity, and inhibition of the TRPC3-Nox2 protein complex results in enhancement of myocardial compliance and flexibility similar to that observed in exercise-treated hearts. In this review, we describe current understanding of the roles of TRPC channels in striated muscle (patho)physiology and propose that targeting TRPC-based protein complexes could be a new strategy to imitate exercise therapy.


Asunto(s)
Ejercicio Físico/fisiología , Condicionamiento Físico Animal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Terapia por Ejercicio/métodos , Humanos , Miocardio/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfolipasas de Tipo C/metabolismo
17.
Sci Signal ; 11(556)2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425165

RESUMEN

Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.


Asunto(s)
Dinaminas/metabolismo , Filaminas/metabolismo , Dinámicas Mitocondriales , Miocardio/metabolismo , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Cateterismo Cardíaco , Hipoxia de la Célula , Senescencia Celular , Dihidropiridinas/farmacología , Ecocardiografía , Guanosina Trifosfato/química , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Infarto del Miocardio/tratamiento farmacológico , Unión Proteica , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
18.
Yakugaku Zasshi ; 138(10): 1257-1262, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30270269

RESUMEN

 Moderate exercise has been reported to combat several diseases, including cardiovascular diseases and depressants. However, many patients do not have ability to undergo exercise therapy due to aging and severity of the symptoms. Therefore development of new drugs that can imitate exercise therapy is desired and actually studied worldwide. The heart is one of the physical load-responsive target organs such as skeletal muscles and vascular smooth muscles. The heart can adapt from environmental stress by changing its structure and morphology (i.e., remodeling). Physiological remodeling, caused by exercise or pregnancy, can be defined by compensative and reversible changes to the heart, whereas pathological remodeling can be defined by irreversible changes of the heart, through aberrant calcium ion (Ca2+) signaling as well as production of reactive oxygen species (ROS). However, crosstalk between Ca2+ and ROS remains obscure. In this review we will introduce our recent findings on the functional crosstalk between transient receptor potential canonical (TRPC) 3 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) 2 as a novel molecular target to mimic exercise therapy.


Asunto(s)
Señalización del Calcio/fisiología , Depresión/tratamiento farmacológico , Descubrimiento de Drogas , Ejercicio Físico/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , NADPH Oxidasa 2/fisiología , Especies Reactivas de Oxígeno , Canales Catiónicos TRPC/fisiología , Animales , Depresión/etiología , Modelos Animales de Enfermedad , Terapia por Ejercicio , Insuficiencia Cardíaca/etiología , Humanos , Ratones , Terapia Molecular Dirigida , NADPH Oxidasa 2/metabolismo , Estrés Oxidativo , Ratas , Canal Catiónico TRPC6/fisiología
19.
Front Pharmacol ; 9: 523, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872396

RESUMEN

Cardiac hypertrophy, induced by neurohumoral factors, including angiotensin II and endothelin-1, is a major predisposing factor for heart failure. These ligands can induce hypertrophic growth of neonatal rat cardiomyocytes (NRCMs) mainly through Ca2+-dependent calcineurin/nuclear factor of activated T cell (NFAT) signaling pathways activated by diacylglycerol-activated transient receptor potential canonical 3 and 6 (TRPC3/6) heteromultimer channels. Although extracellular nucleotide, adenosine 5'-triphosphate (ATP), is also known as most potent Ca2+-mobilizing ligand that acts on purinergic receptors, ATP never induces cardiomyocyte hypertrophy. Here we show that ATP-induced production of nitric oxide (NO) negatively regulates hypertrophic signaling mediated by TRPC3/6 channels in NRCMs. Pharmacological inhibition of NO synthase (NOS) potentiated ATP-induced increases in NFAT activity, protein synthesis, and transcriptional activity of brain natriuretic peptide. ATP significantly increased NO production and protein kinase G (PKG) activity compared to angiotensin II and endothelin-1. We found that ATP-induced Ca2+ signaling requires inositol 1,4,5-trisphosphate (IP3) receptor activation. Interestingly, inhibition of TRPC5, but not TRPC6 attenuated ATP-induced activation of Ca2+/NFAT-dependent signaling. As inhibition of TRPC5 attenuates ATP-stimulated NOS activation, these results suggest that NO-cGMP-PKG axis activated by IP3-mediated TRPC5 channels underlies negative regulation of TRPC3/6-dependent hypertrophic signaling induced by ATP stimulation.

20.
J Physiol Sci ; 68(2): 153-164, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28105583

RESUMEN

When a cardiac muscle is held in a stretched position, its [Ca2+] transient increases slowly over several minutes in a process known as stress-induced slow increase in intracellular Ca2+ concentration ([Ca2+]i) (SSC). Transient receptor potential canonical (TRPC) 3 forms a non-selective cation channel regulated by the angiotensin II type 1 receptor (AT1R). In this study, we investigated the role of TRPC3 in the SSC. Isolated mouse ventricular myocytes were electrically stimulated and subjected to sustained stretch. An AT1R blocker, a phospholipase C inhibitor, and a TRPC3 inhibitor suppressed the SSC. These inhibitors also abolished the observed SSC-like slow increase in [Ca2+]i induced by angiotensin II, instead of stretch. Furthermore, the SSC was not observed in TRPC3 knockout mice. Simulation and immunohistochemical studies suggest that sarcolemmal TRPC3 is responsible for the SSC. These results indicate that sarcolemmal TRPC3, regulated by AT1R, causes the SSC.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Canales Catiónicos TRPC/metabolismo , Angiotensina II/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...