Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evolution ; 75(4): 847-860, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33599290

RESUMEN

Macroevolutionary consequences of competition among large clades have long been sought in patterns of lineage diversification. However, mechanistically clear examples of such effects remain elusive. Here, we postulated that the limited phenotypic diversity and insular gigantism in lagomorphs could be explained at least in part by an evolutionary constraint placed on them by potentially competing ungulate-type herbivores (UTHs). Our analyses yielded three independent lines of evidence supporting this hypothesis: (1) the minimum UTH body mass is the most influential predictor of the maximum lagomorph body mass in modern ecoregions; (2) the scaling patterns of local-population energy use suggest universal competitive disadvantage of lagomorphs weighing over approximately 6.3 kg against artiodactyls, closely matching their observed upper size limit in continental settings; and (3) the trajectory of maximum lagomorph body mass in North America from the late Eocene to the Pleistocene (37.5-1.5 million years ago) was best modeled by the body mass ceiling placed by the smallest contemporary perissodactyl or artiodactyl. Body size evolution in lagomorphs has likely been regulated by the forces of competition within the clade, increased predation in open habitats, and importantly, competition from other ungulate-type herbivores. Our findings suggest conditionally-coupled dynamics of phenotypic boundaries among multiple clades within an adaptive zone, and highlight the synergy of biotic and abiotic drivers of diversity.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Liebres/anatomía & histología , Conejos/anatomía & histología , Animales , Ecosistema , Fósiles , Modelos Biológicos , América del Norte
3.
Biol Lett ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343558

RESUMEN

Recent advances in genomics and palaeontology have begun to unravel the complex evolutionary history of the gray wolf, Canis lupus Still, much of their phenotypic variation across time and space remains to be documented. We examined the limb morphology of the fossil and modern North American gray wolves from the late Quaternary (

Asunto(s)
Ecosistema , Extremidades/anatomía & histología , Lobos/anatomía & histología , Lobos/clasificación , Animales , Fósiles/anatomía & histología , América del Norte , Especificidad de la Especie
4.
R Soc Open Sci ; 3(10): 160518, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27853569

RESUMEN

The Middle to Late Eocene sediments of Texas have yielded a wealth of fossil material that offers a rare window on a diverse and highly endemic mammalian fauna from that time in the southern part of North America. These faunal data are particularly significant because the narrative of mammalian evolution in the Paleogene of North America has traditionally been dominated by taxa that are known from higher latitudes, primarily in the Rocky Mountain and northern Great Plains regions. Here we report on the affinities of two peculiar carnivoraforms from the Chambers Tuff of Trans-Pecos, Texas, that were first described 30 years ago as Miacis cognitus and M. australis. Re-examination of previously described specimens and their inclusion in a cladistic analysis revealed the two taxa to be diminutive basal amphicyonids; as such, they are assigned to new genera Gustafsonia and Angelarctocyon, respectively. These two taxa fill in some of the morphological gaps between the earliest-known amphicyonid genus, Daphoenus, and other Middle-Eocene carnivoraforms, and lend additional support for a basal caniform position of the beardogs outside the Canoidea. The amphicyonid lineage had evidently given rise to at least five rather distinct forms by the end of the Middle Eocene. Their precise geographical origin remains uncertain, but it is plausible that southern North America served as an important stage for a very early phase of amphicyonid radiation.

5.
Am Nat ; 182(6): E196-214, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24231545

RESUMEN

Mammalian body mass strongly correlates with life history and population properties at the scale of mouse to elephant. Large body size is thus often associated with elevated extinction risk. I examined the North American fossil record (28-1 million years ago) of 276 terrestrial genera to uncover the relationship between body size and extinction probability above the species level. Phylogenetic comparative analysis revealed no correlation between sampling-adjusted durations and body masses ranging 7 orders of magnitude, an observation that was corroborated by survival analysis. Most of the ecological and temporal groups within the data set showed the same lack of relationship. Size-biased generic extinctions do not constitute a general feature of the Holarctic mammalian faunas in the Neogene. Rather, accelerated loss of large mammals occurred during intervals that experienced combinations of regional aridification and increased biomic heterogeneity within continents. The latter phenomenon is consistent with the macroecological prediction that large geographic ranges are critical to the survival of large mammals in evolutionary time. The frequent lack of size selectivity in generic extinctions can be reconciled with size-biased species loss if extinctions of large and small mammals at the species level are often driven by ecological perturbations of different spatial and temporal scales, while those at the genus level are more synchronized in time as a result of fundamental, multiscale environmental shifts.


Asunto(s)
Tamaño Corporal , Extinción Biológica , Fósiles , Mamíferos/anatomía & histología , Animales , Mamíferos/clasificación , Mamíferos/fisiología , América del Norte , Filogenia , Medición de Riesgo , Especificidad de la Especie
6.
PLoS One ; 6(9): e24146, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21935380

RESUMEN

BACKGROUND: Despite a long history of research, the phylogenetic origin and initial diversification of the mammalian crown-group Carnivora remain elusive. Well-preserved fossil materials of basal carnivorans are essential for resolving these issues, and for constraining the timing of the carnivoran origin, which constitutes an important time-calibration point in mammalian phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: A new carnivoramorphan from the middle Eocene of southern California, Lycophocyon hutchisoni, is described. The new taxon exhibits stages of dental and basicranial evolution that are intermediate between earlier carnivoramorphans and the earliest representatives of canoid carnivorans. The evolutionary affinity of the new taxon was determined by a cladistic analysis of previously-published and newly-acquired morphological data for 30 Paleogene carnivoramorphans. The most-parsimonious trees identified L. hutchisoni as a basal caniform carnivoran, and placed (1) Tapocyon robustus, Quercygale angustidens, "Miacis" sylvestris, "M." uintensis, and "M." gracilis inside or outside the Carnivora, (2) nimravids within the Feliformia, and (3) the amphicyonid Daphoenus outside the crown-group Canoidea. Parsimony reconstructions of ancestral character states suggest that loss of the upper third molars and development of well-ossified entotympanics that are firmly fused to the basicranium (neither condition is observed in L. hutchisoni) are not associated with the origin of the Carnivora as traditionally thought, but instead occurred independently in the Caniformia and the Feliformia. A discriminant analysis of the estimated body weight and dental ecomorphology predicted a mesocarnivorous diet for L. hutchisoni, and the postcranial morphology suggests a scansorial habit. CONCLUSIONS/SIGNIFICANCE: Lycophocyon hutchisoni illuminates the morphological evolution of early caniforms leading to the origin of crown-group canoids. Considerable uncertainty remains with respect to the phylogenetic origin of the Carnivora. The minimum date of caniform-feliform divergence is provisionally suggested to be either 47 million years ago or 38 million years ago, depending on the position of "Miacis" sylvestris within or outside the Carnivora, respectively.


Asunto(s)
Carnívoros/fisiología , Animales , Evolución Biológica , Peso Corporal , Huesos/anatomía & histología , Calibración , California , Carnívoros/clasificación , Dieta , Fósiles , Geografía , Geología , América del Norte , Filogenia , Factores de Tiempo
7.
Nature ; 471(7336): 51-7, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368823

RESUMEN

Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.


Asunto(s)
Biodiversidad , Especies en Peligro de Extinción/estadística & datos numéricos , Extinción Biológica , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Planeta Tierra , Especies en Peligro de Extinción/historia , Especies en Peligro de Extinción/tendencias , Fósiles , Historia del Siglo XXI , Historia Antigua , Actividades Humanas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...