Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20143958

RESUMEN

BackgroundAfter the first case of COVID-19 in Japan on 15 January 2020, multiple nationwide COVID-19 clusters were identified by the end of February. The Japanese government focused on mitigating emerging COVID-19 clusters by conducting active nationwide epidemiological surveillance. However, an increasing number of cases appeared until early April, many with unclear infection routes exhibiting no recent history of travel outside Japan. We aimed to evaluate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences from COVID-19 cases until early April and characterise the genealogical networks to demonstrate possible routes of spread in Japan. MethodsNasopharyngeal specimens were collected from patients and a quantitative reverse transcription polymerase chain reaction testing for SARS-CoV-2 was performed. Positive RNA samples were subjected whole genome sequencing and a haplotype network analysis was performed. FindingsSome of the primary clusters identified during January and February in Japan directly descended from Wuhan-Hu-1-related isolates in China and other distinct clusters. Clusters were almost contained until mid-March; the haplotype network analysis demonstrated that COVID-19 cases from late March through early April may have caused an additional large cluster related to the outbreak in Europe, leading to additional spread within Japan. National self-restraint during February was effective in mitigating the COVID-19 spread, but late action on stopping immigration and declaring national emergency in Japan might be involved in the later increase in cases. InterpretationGenome surveillance suggested that at least two distinct SARS-CoV-2 introductions from China and other countries occurred. FundingJapan Agency for Medical Research and Development.

2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-6740

RESUMEN

Since 31 March 2013, the government of China has been notifying the World Health Organization (WHO) of human infections with the avian influenza A(H7N9) virus,1 as mandated by the International Health Regulations (2005).2 While human infections with other subgroups of H7 influenza viruses (e.g. H7N2, H7N3, and H7N7) have previously been reported,3 the current event in China is of historical significance as it is the first time that A(H7N9) viruses have been detected among humans and the first time that a low pathogenic avian influenza virus is being associated with human fatalities.4 In this rapidly evolving situation, detailed epidemiologic and clinical data from reported cases are limited—making assessments challenging—however, some key questions have arisen from the available data. Age and sex data, as one of the first and most readily available data, may be an important proxy for gender-specific behaviours/conditions and an entry point for response.5,6 Here, we describe the age and sex distribution of the human cases of avian influenza A(H7N9) to better inform risk assessments and potential next steps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...