Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 5326, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33067449

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Commun ; 11(1): 4852, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978389

RESUMEN

The occurrence of superconductivity in doped SrTiO3 at low carrier densities points to the presence of an unusually strong pairing interaction that has eluded understanding for several decades. We report experimental results showing the pressure dependence of the superconducting transition temperature, Tc, near to optimal doping that sheds light on the nature of this interaction. We find that Tc increases dramatically when the energy gap of the ferroelectric critical modes is suppressed, i.e., as the ferroelectric quantum critical point is approached in a way reminiscent to behaviour observed in magnetic counterparts. However, in contrast to the latter, the coupling of the carriers to the critical modes in ferroelectrics is predicted to be small. We present a quantitative model involving the dynamical screening of the Coulomb interaction and show that an enhancement of Tc near to a ferroelectric quantum critical point can arise due to the virtual exchange of longitudinal hybrid-polar-modes, even in the absence of a strong coupling to the transverse critical modes.

3.
Phys Rev Lett ; 114(9): 097002, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793843

RESUMEN

The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138 K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures.

4.
Phys Rev Lett ; 102(21): 216402, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19519118

RESUMEN

We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4. We compare the data, obtained at fields from 10 to 45 T, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f holes participate in the Fermi surface up to the highest magnetic fields studied. We comment on the significance of these findings for the unconventional superconducting properties of this material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...