Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1343396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371422

RESUMEN

The biochemical valorization potential of food waste (FW) could be exploited by extracting decreasing added-value bio-based products and converting the final residues into energy. In this context, multi-purpose and versatile schemes integrating thermal and biochemical conversion processes will play a key role. An upstream thermal pretreatment + solid-liquid separation unit was here proposed to optimize the conversion of the liquid fraction of FW into valuable chemicals through semi-continuous fermentation process, and the conversion of the residual solid fraction into biomethane through anaerobic digestion. The solid residues obtained after thermal pretreatment presented a higher soluble COD fraction, which resulted in higher methane production with respect to the raw residues (0.33 vs. 0.29 Nm3CH4 kg-1VSfed) and higher risk of acidification and failure of methanogenesis when operating at lower HRT (20d). On the contrary, at HRT = 40 d, the pretreatment did not affect the methane conversion rates and both tests evidenced similar methane productions of 0.33 Nm3CH4 kg-1VSfed. In the reactor fed with pretreated residue, the association of hydrogenotrophic methanogens with syntrophic bacteria prevented the acidification of the system. Modelling proved the eligibility of the FW solid residues as substrates for anaerobic digestion, given their small inert fractions that ranged between 0% and 30% of the total COD content.

2.
Microorganisms ; 11(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004793

RESUMEN

Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.

3.
Front Bioeng Biotechnol ; 11: 1157243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113665

RESUMEN

Microbial chain elongation has emerged as a valuable bioprocess for obtaining marketable products, such as medium chain fatty acids usable in several industrial applications, from organic waste. The understanding of the microbiology and microbial ecology in these systems is crucial to apply these microbiomes in reliable production processes controlling microbial pathways to promote favourable metabolic processes, which will in turn increase product specificity and yields. In this research, the dynamics, cooperation/competition and potentialities of bacterial communities involved in the long-term lactate-based chain elongation process from food waste extract were evaluated under different operating conditions by DNA/RNA amplicon sequencing and functional profile prediction. The feeding strategies and the applied organic loading rates strongly affected the microbial community composition. The use of food waste extract promoted the selection of primary fermenters (i.e., Olsenella, Lactobacillus) responsible for the in situ production of electron donors (i.e., lactate). The discontinuous feeding and the organic loading rate 15 gCOD L-1 d-1 selected the best performing microbiome in which microbes coexist and cooperate to complete the chain elongation process. Both at DNA and RNA level, this microbiome was composed by the lactate producer Olsenella, the short chain fatty acids producers Anaerostipes, Clostridium sensu stricto 7, C. sensu stricto 12, Corynebacterium, Erysipelotrichaceae UCG-004, F0332, Leuconostoc, and the chain elongator Caproiciproducens. This microbiome also showed the highest predicted abundance of short-chain acyl-CoA dehydrogenase, the functional enzyme responsible for the chain elongation process. The combined approach herein used allowed to study the microbial ecology of chain elongation process from food waste by identifying the main functional groups, establishing the presence of potential biotic interactions within the microbiomes, and predicting metabolic potentialities. This study provided pivotal indications for the selection of high-performance microbiome involved in caproate production from food waste that can serve as a basis for further improving system performance and engineering the process scale-up.

4.
Waste Manag ; 150: 328-338, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907330

RESUMEN

New technologies development and renewable source exploitation are key tools to realize the European Green Deal and to boost the bio-based economy. In this context, fermentation of organic residues as food waste is an efficient method to obtain marketable products such as carboxylic acids widely applied in industrial production. Under favourable thermodynamic conditions, short chain fatty acids deriving from primary fermentation could be biologically converted into medium-chain fatty acids as caproate via chain elongation (CE) process, by using ethanol or lactate as electron donors. This study evaluates the effectivity of producing caproate from Food Waste extract rich in organics with in situ electron donor production. The test carried out at OLR 15 gCOD L-1d-1 showed high Volatile Fatty Acids (from acetic to caproic acid) yields (0.37 g g-1CODfed), with a maximum caproate concentration of 8 g L-1. The associated microbiome was composed by lactate-producing bacteria (Corynebacterium, Lactobacillus, and Olsenella) and by chain elongators (Clostridiaceae and Caproiciproducens). By stressing the system with OLR increase up to 20 gCOD L-1d-1, the CE process was inhibited by the high concentration of caproate (low occurrence of Clostridiaceae and Caproiciproducens). Nevertheless, after few days of stop-feeding regime imposed to the system, the microbiome restored its capability to proceed with lactate-based CE pathways. Different batch tests carried out with the inhibited biomass at increasing initial caproate concentration confirmed its impact on lactate utilization kinetics.


Asunto(s)
Caproatos , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Alimentos , Ácido Láctico/metabolismo
5.
Microorganisms ; 9(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34946124

RESUMEN

The amount of sewage sludge generated from wastewater treatment plants globally is unavoidably increasing. In recent years, significant attention has been paid to the biorefinery concept based on the conversion of waste streams to high-value products, material, and energy by microorganisms. However, one of the most significant challenges in the field is the possibility of controlling the microorganisms' pathways in the anaerobic environment. This study investigated two different anaerobic fermentation tests carried out with real waste activated sludge at high organic loading rate (10 g COD L-1d-1) and short hydraulic retention time (HRT) to comprehensively understand whether this configuration enhances extracellular polymeric substance (EPS) and metal solubilisation. The quantity of EPS recovered increased over time, while the chemical oxygen demand to EPS ratio remained in the range 1.31-1.45. Slightly acidic conditions and sludge floc disintegration promoted EPS matrix disruption and release, combined with the solubilisation of organically bound toxic metals, such as As, Be, Cu, Ni, V, and Zn, thereby increasing the overall metal removal efficiency due to the action of hydrolytic microorganisms. Bacteroidetes, Firmicutes, and Chloroflexi were the most abundant phyla observed, indicating that the short HRT imposed on the systems favoured the hydrolytic and acidogenic activity of these taxa.

6.
Microorganisms ; 9(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946180

RESUMEN

Anaerobic digestion is a widely used technology for sewage sludge stabilization and biogas production. Although the structure and composition of the microbial communities responsible for the process in full-scale anaerobic digesters have been investigated, little is known about the microbial successional dynamics during the start-up phase and the response to variations occurring in such systems under real operating conditions. In this study, bacterial and archaeal population dynamics of a full-scale mesophilic digester treating activated sludge were investigated for the first time from the start-up, performed without adding external inoculum, to steady-state operation. High-throughput 16S rRNA gene sequencing was used to describe the microbiome evolution. The large majority of the reads were affiliated to fermentative bacteria. Bacteroidetes increased over time, reaching 22% of the total sequences. Furthermore, Methanosaeta represented the most abundant methanogenic component. The specific quantitative data generated by real-time PCR indicated an enrichment of bacteria and methanogens once the steady state was reached. The analysis allowed evaluation of the microbial components more susceptible to the shift from aerobic to anaerobic conditions and estimation of the microbial components growing or declining in the system. Additionally, activated sludge was investigated to evaluate the microbial core selected by the WWTP operative conditions.

7.
Bioresour Technol ; 338: 125517, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34273629

RESUMEN

A novel biorefinery platform integrating thermal pretreatment and solid-liquid separation unit is here proposed to fully exploit food waste (FW) potential for production of valuable chemicals and energy through semi-continuous anaerobic bioconversion. The liquid fraction deriving from raw or pretreated FW, was fermented into volatile fatty acids (VFAs, from acetic to caproic acid) while the residual fraction was converted into biomethane. Thermal pretreatment effectively extracted a portion of the macromolecular organics, especially starch, to the liquid phase, promoting acidogenic fermentation and chain elongation pathways (0.43 gVFA g-1VSfed and 0.58 gVFA g-1VSfed with raw and pretreated extract, respectively). In parallel, anaerobic digestion of solid residue in 10 L reactors showed process stability and higher conversion rate for the pretreated residue (0.31 against 0.26 Nm3CH4 kg-1VSfed). The mass-transfer balance coupled with the economic assessment, calculated in terms of direct gross added value, indicated promising revenues by integrating the thermal upstream treatment.


Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Alimentos
8.
N Biotechnol ; 55: 108-117, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31634577

RESUMEN

Anaerobic digestion is applied worldwide to treat food waste (FW) with the aim of obtaining renewable bioenergy by exploiting the methane gas produced. However, there are several problems in practical applications, primarily due to system instability. Although exhaustive knowledge regarding anaerobic microbial community composition has been established, few studies have investigated long-term correlations between microbial consortia, operative conditions and feedstock characteristics. Here, microbial community shifts as a response to feedstock variations were investigated in long-term semi-continuous systems, which were evaluated by an in situ cell detection method and 16S rRNA gene amplicon sequencing. FW digestion showed progressive system instability caused by the inhibition of methanogens, which resulted in volatile fatty acid accumulation and process failure at the low organic loading rate (OLR). Conversely, by co-digesting FW with waste-activated sludge (WAS), a stable process with methane yields of up to 0.27 Nm3 kg-1VSfed for OLR = 1.7 gVS L-1d-1 was achieved. This stabilizing effect was not related to the buffering capacity of WAS, but to its capacity to avoid volatile fatty acid accumulation and falls in pH by overcoming methanogenic activity inhibition. WAS addition promoted the establishment of a stable and active archaeal population in anaerobic co-digestion (AcoD) reactors. The continuous supply of trace elements together with the seeding of microbial functional groups were the main drivers that positively affected process stability.


Asunto(s)
Consorcios Microbianos , Eliminación de Residuos , Anaerobiosis , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Ácidos Grasos Volátiles/análisis , Concentración de Iones de Hidrógeno , Metano/metabolismo , Microbiota , Filogenia , Solubilidad
9.
Waste Manag ; 97: 27-37, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31447024

RESUMEN

The reasons for the acidification problem affecting Food Waste (FW) anaerobic digestion were explored, combining the outcomes of microbiological data (FISH and CARD-FISH) and process modelling, based on the Anaerobic Digestion Model n°1 (ADM1). Long term semi continuous experiments were carried out, both with sole FW and with Waste Activated Sludge (WAS) as a co-substrate, at varying operational conditions (0.8-2.2 g VS L-1 d-1) and FW / WAS ratios. Acidification was observed along FW mono-digestion, making it necessary to buffer the digesters; ADM1 modelling and experimental results suggested that this phenomenon was due to the methanogenic activity decline, most likely related to a deficiency in trace elements. WAS addition, even at proportions as low as 10% of the organic load, settled the acidification issue; this ability was related to the promotion of the methanogenic activity and the consequent enhancement of acetate consumption, rather than to WAS buffering capacity. The ability of the ADM1 to model processes affected by low microbial activity, such as FW mono-digestion, was also assessed. It was observed that the ADM1 was only adequate for digestions with a high activity level for both bacteria and methanogens (FISH/CARD-FISH ratio preferably >0.8) and, under these conditions, the model was able to correctly predict the relative abundance of both microbial populations, extrapolated from FISH analysis.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Alimentos , Metano , Pepsina A
10.
Sci Total Environ ; 689: 765-773, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31280158

RESUMEN

This study analyses the bacterial population dynamics of a mixed microbial community (MMC) selected in a pilot plant producing polyhydroxyalkanoate (PHA) from the fermentation of the organic fraction of urban waste (OFMSW) and sewage sludge (SS). 16S rRNA gene high-throughput sequencing revealed the occurrence of a variety of PHA accumulating bacteria that ensured a stable PHA production in an open system operating with real substrates and without temperature control. The Volatile Fatty Acids (VFA) changes in the feed and the temperature variation affected the dynamics of the PHA-accumulating bacteria over the plant operation. Remarkably, the higher PHA content was associated to a MMC largely comprising of Hydrogenophaga species during the operation at higher working temperature. The involvement of a heterogeneous PHA-accumulating MMC was associated with a high phaC synthase genes biodiversity confirming the occurrence of a functional redundancy.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Microbiota , Polihidroxialcanoatos/genética , Aguas del Alcantarillado/análisis , Aguas Residuales/análisis , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Reactores Biológicos , Fermentación , Dinámica Poblacional , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA