Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1128, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555902

RESUMEN

Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.


Asunto(s)
Caenorhabditis elegans/fisiología , Caenorhabditis elegans/parasitología , Lípidos/fisiología , Conducta Predatoria/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Femenino , Lípidos/química , Oviposición/fisiología , Conducta Predatoria/efectos de los fármacos , Rabdítidos/patogenicidad , Rabdítidos/fisiología , Células Receptoras Sensoriales/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Transducción de Señal/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/fisiología , Ácido gamma-Aminobutírico/fisiología
2.
Nat Commun ; 6: 8264, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26372413

RESUMEN

A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Interneuronas/fisiología , Locomoción/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPC/genética , Ondas Ultrasónicas , Animales , Caenorhabditis elegans , Interneuronas/metabolismo , Microburbujas , Neuronas/metabolismo , Neuronas/fisiología , Células Receptoras Sensoriales/metabolismo
3.
Neuron ; 86(2): 428-41, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25864633

RESUMEN

The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and modifies its future behavior accordingly. We derive a behavioral model that reveals a critical period over which information about the food environment is acquired and predicts future search behavior. We also identify a pair of high-threshold sensory neurons that encode variability in food concentration and the downstream dopamine-dependent circuit that generates appropriate search behavior upon removal from food. Further, we show that CREB is required in a subset of interneurons and determines the timescale over which the variability is integrated. Interestingly, the variability circuit is a subset of a larger circuit driving search behavior, showing that learning directly modifies the very same neurons driving behavior. Our study reveals how a neural circuit decodes environmental variability to generate contextually appropriate decisions.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Dopamina/metabolismo , Conducta Alimentaria/fisiología , Plasticidad Neuronal/fisiología , Células Receptoras Sensoriales/fisiología , Adaptación Fisiológica/fisiología , Animales , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...