Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 122: 105609, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38806077

RESUMEN

Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.

2.
Parasit Vectors ; 17(1): 17, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217036

RESUMEN

BACKGROUND: Components of excretory/secretory products (ESPs) of helminths have been proposed as vaccine targets and shown to play a role in modulating host immune responses for decades. Such research interest is further increased by the discovery of extracellular vesicles (EVs) in the ESPs of parasitic worms. Although efforts have been made to reveal the cargos of EVs, little is known about the proteomic differences between EVs and canonical ESPs released by parasitic worms from animals. METHODS: The total ESPs of Haemonchus contortus (barber's pole worm) were obtained by short-term in vitro culturing of young adult worms, and small EVs were isolated from ESPs using an ultracentrifugation method. Data-dependent acquisition (DDA) label-free Nano-LC-MS/MS was used to quantify the proteomic difference between small EVs and EV-depleted ESPs of H. contortus. Functional annotation and enrichment of the differential proteins were performed regarding cellular components, molecular functions, pathways, and/or biological processes. RESULTS: A total of 1697 proteins were identified in small EVs and EV-depleted ESPs of H. contortus adult worms, with 706 unique proteins detected in the former and 597 unique proteins in the latter. It was revealed that proteins in small EVs are dominantly cytoplasmic, whereas proteins in EV-depleted ESPs are mainly extracellular; canonical ESPs such as proteases and small GTPases were abundantly detected in small EVs, and SCP/TAP-, DUF-, and GLOBIN domain-containing proteins were mainly found in EV-depleted ESPs. Compared with well-characterised proteins in small EVs, about 50% of the proteins detected in EV-depleted ESPs were poorly characterised. CONCLUSIONS: There are remarkable differences between small EVs and EV-depleted ESPs of H. contortus in terms of protein composition. Immune modulatory effects caused by nematode ESPs are possibly contributed mainly by the proteins in small EVs.


Asunto(s)
Vesículas Extracelulares , Haemonchus , Nematodos , Animales , Proteómica , Espectrometría de Masas en Tándem , Haemonchus/metabolismo
3.
Vet Parasitol ; 323: 110052, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37865081

RESUMEN

Protease inhibitors are major components of excretory/secretory products released by parasitic nematodes and have been proposed to play roles in host-parasite interactions. Haemonchus contortus (the barber's pole worm) encodes for several serine protease inhibitors, and in a previous study we identified a trypsin inhibitor-like serine protease inhibitor of this blood-feeding nematode, SPI-I8, as necessary for anticoagulation. Here, we demonstrated that a bovine pancreatic trypsin inhibitor/Kunitz-type serine protease inhibitor (BPTI/Kunitz) domain-containing protein highly expressed in parasitic stages, HCON_00133150, is involved in suppressing proinflammatory cytokine production in mammalian cells. Fluorescent labelling of HCON_00133150 revealed a punctate localisation at the inner hypodermal membrane of H. contortus, an organ closely related to the excretory column. Yeast two-hybrid screening and immunoprecipitation-mass spectrometry identified that the recombinant HCON_00133150 physically interacted with a range of host proteins including the G protein subunit beta 1 of sheep (Ovis aries; OaGNB1), a negative regulator of NLRP3 inflammasome activation. Interestingly, heterologous expression of HCON_00133150 enhanced the inhibitory effect of OaGNB1 on NLRP3 inflammasome and the maturation of proinflammatory cytokines IL-1ß and IL-18 in transfected cells. 1-to-1 orthologues (n = 33) of BPTI/Kunitz inhibitor domain-containing proteins were predicted in clades III, IV and V (but not clade I) parasitic nematodes. Structural (tandem BPTI/Kunitz inhibitor domains inverted into the globular reticulation) and functional (a GNB1 enhancer) characterisation of HCON_00133150 and its orthologues elucidated that these molecules might contribute to immune suppression by parasitic nematodes in animals and humans.

4.
PLoS Pathog ; 19(1): e1011129, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716341

RESUMEN

Parasitic roundworms (nematodes) have lost genes involved in the de novo biosynthesis of haem, but have evolved the capacity to acquire and utilise exogenous haem from host animals. However, very little is known about the processes or mechanisms underlying haem acquisition and utilisation in parasites. Here, we reveal that HRG-1 is a conserved and unique haem transporter in a broad range of parasitic nematodes of socioeconomic importance, which enables haem uptake via intestinal cells, facilitates cellular haem utilisation through the endo-lysosomal system, and exhibits a conspicuous distribution at the basal laminae covering the alimentary tract, muscles and gonads. The broader tissue expression pattern of HRG-1 in Haemonchus contortus (barber's pole worm) compared with its orthologues in the free-living nematode Caenorhabditis elegans indicates critical involvement of this unique haem transporter in haem homeostasis in tissues and organs of the parasitic nematode. RNAi-mediated gene knockdown of hrg-1 resulted in sick and lethal phenotypes of infective larvae of H. contortus, which could only be rescued by supplementation of exogenous haem in the early developmental stage. Notably, the RNAi-treated infective larvae could not establish infection or survive in the mammalian host, suggesting an indispensable role of this haem transporter in the survival of this parasite. This study provides new insights into the haem biology of a parasitic nematode, demonstrates that haem acquisition by HRG-1 is essential for H. contortus survival and infection, and suggests that HRG-1 could be an intervention target candidate in a range of parasitic nematodes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Haemonchus , Nematodos , Parásitos , Animales , Nematodos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Haemonchus/genética , Haemonchus/metabolismo , Hemo/metabolismo , Parásitos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mamíferos
5.
Front Cell Dev Biol ; 9: 695003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327203

RESUMEN

Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.

6.
Int J Parasitol ; 51(12): 1015-1026, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34126100

RESUMEN

Haemonchus contortus, a blood-feeding nematode, inhibits blood coagulation at the site of infection to facilitate blood-sucking and digesting for successful parasitism. However, the mechanism underlying anti-coagulation at the host-parasite interface is largely unknown. In the current study, Hc-spi-i8, which has two greatly different transcripts named Hc-spi-i8a and Hc-spi-i8b, respectively, was described. Hc-SPI-I8A was a serine protease inhibitor containing a trypsin inhibitor-like cysteine rich (TIL) domain, while Hc-SPI-I8B was not. Hc-SPI-I8A/B were primarily expressed in the hypodermis, intestines and gonads in the parasitic stages of H. contortus. Hc-SPI-I8A interacted with Ovis aries TSP1-containing protein (OaTSP1CP), which was determined by yeast two-hybrid, co-immunoprecipitation (Co-IP), pull down and co-localization experiments. The blood clotting time contributed by the TIL domain was prolonged by Hc-SPI-I8A. Hc-SPI-I8A is most likely interfering in the extrinsic coagulation cascade by interacting with OaTSP1CP through its TIL domain and intrinsic coagulation cascade by an unknown mechanism. These findings depict a crucial point in the host-parasite interaction during H. contortus colonization, which should contribute to drug discovery and vaccine development in fighting against this important parasite worldwide.


Asunto(s)
Haemonchus , Animales , Coagulación Sanguínea , Proteínas del Helminto/genética , Inhibidores de Serina Proteinasa , Inhibidores de Tripsina , Desarrollo de Vacunas
7.
mSystems ; 5(3)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398277

RESUMEN

Probiotic Bacillales are effective in controlling pathogens. Live probiotic bacteria improve the composition of the gastrointestinal microbiota, leading to a reduction in pathogen colonization. However, it remains largely unknown how probiotics regulate the host's immunologic responses and protect the host from parasitic infection. In this study, we addressed whether Bacillales were effective against Haemonchus contortus, a parasitic nematode that infects small ruminants worldwide. Using 16S rRNA sequencing, we found that Bacillales were largely depleted in the abomasal microbiota of sheep infected with H. contortus We constructed a recombinant Bacillus subtilis named rBS CotB-HcG that express the glyceraldehyde-3-phosphate dehydrogenase of H. contortus (HcGAPDH) on its spore surface using the Bacillus subtilis spore coat protein B (CotB) as a carrier. Mice receiving rBS CotB-HcG orally showed strong Th1-dominated immune responses. More importantly, sheep administered BS CotB-HcG per os showed increasing proliferation of the peripheral blood mononucleates, elevated anti-HcGAPDH IgG in sera, and higher anti-HcGAPDH sIgA in the intestinal mucus than the control sheep. The average weight gain of H. contortus-infected sheep treated with rBS CotB-HcG (Hc+rBS CotB-HcG ) was 48.73% greater than that of unvaccinated sheep. Furthermore, these Hc+rBS CotB-HcG sheep had fewer eggs per gram of feces by 84.1% and adult worms by 71.5%. They also demonstrated greatly lessened abomasal damage by H. contortus with an abundance of probiotic species in the abomasal microbiota. Collectively, our data unequivocally demonstrate the protective roles of CotB-HcGAPDH-expressing B. subtilis spores in against H. contortus infection and showed great potential of using probiotic-based strategy in controlling parasitic nematodes of socioeconomic importance in general.IMPORTANCE Initial analyses of the abomasal microbiota of sheep using 16S rRNA sequencing suggested that probiotic bacteria played a protective role in against H. contortus infection. A recombinant Bacillus subtilis expressing a fusion protein CotB-HcGAPDH on its spore's surface induced strong Th1 immune response in a murine model. The same probiotic recombinant, upon only one oral application, protected sheep against H. contortus infection by reducing egg shedding and decreasing adult worm loads of the parasite and increasing body weight gain of infected sheep. Both Th1 and Th2 immune responses were evident in these immunized sheep.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30105005

RESUMEN

The high concentration of melatonin (MEL) in the intestinal mucosa suggests that it has a special physiological function in intestine. In hens, previous studies have shown that MEL treatment promoted egg-laying performance. Considering the importance of amino acids (AA) for egg formation, we hypothesized that MEL may enhance the intestinal absorption of AA from the feed, thus promoting egg laying performance. In this study, we supplemented the hens with MEL for two consecutive weeks. The results showed that, compared with control group, feeding with 0.625 mg MEL/kg diets gave rise to higher egg laying rate (by 4.3%, P = 0.016), increased eggshell thickness (by 16.9%, P < 0.01) and albumen height (by 4.5%, P = 0.042). Meanwhile, feeding with 0.625 and 2.5 mg MEL/kg diets could significantly increase serum levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline. Furthermore, a 0.625 mg MEL/kg diets could significantly increase the expression of PepT1 (by 3949.9%), B0AT (by 6045.9%), b0, +AT (by 603.5%), and EAAT3 (by 412.7%) in the jejunum. Additionally, in the cultured intestinal crypt "organoids," treatment with 0.5 µM MEL could significantly enhance the expression of PepT1, b0, +AT and EAAT3 mRNAs by 35.4%, 110.0%, and 160.1%, respectively. Detection of MEL concentration in serum and intestinal fluid suggested that lower dosage of MEL feeding was mainly acted on intestine locally, and further increased intestinal antioxidases (GPx-3, SOD-1 or PRDX-3) mRNA expression. Taken together, we demonstrated that MEL feeding in laying hens could locally promote the expression and function of AA transporter in small intestine by up-regulating antioxidases expression, and finally elevate laying performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...