Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 54185-54191, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943303

RESUMEN

Ultrathin (∼10 nm) insulating polymer films are commonly employed as an interfacial modification layer (IML) to improve charge balance and suppress interfacial exciton quenching in quantum dot light-emitting diodes (QLEDs). However, because the thickness is smaller than the energy transfer distance, interfacial exciton quenching is only partially suppressed, leading to the degrading of device performance. In this work, a thick (35 nm) inorganic CdS film is developed to serve as the IML of CdSe quantum-dot-based QLED. Benefiting from relatively low electron mobility and well-matched energy level, the CdS IML can effectively improve charge balance. In addition, because the thickness is larger than the energy transfer distance, interfacial exciton quenching can be completely blocked. As a result, the QLEDs with CdS IML exhibit a maximum EQE of 21.2% and a peak current efficiency of 24.2 cd A-1, which are about 1.32- and 1.4-fold higher than 16.1% and 17.3 cd A-1 of the devices without CdS IML, respectively. Our work offers an efficient method to completely block interfacial exciton quenching, which may open a new avenue for developing higher-performance QLEDs.

2.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296890

RESUMEN

The acceptor-donor-acceptor (A-D-A) type conjugated organic molecule has been widely applied in the organic optoelectronics field. A total of Nine compounds (1-9) were designed under the A-D-A framework, with the electron donor benzodithiophene as the core and dicyanomethylene as the acceptor moiety, modifying the benzodithiophene with the phenyl, naphthyl, and difluorinated phenyl groups. The conjugation length can be changed by introducing a thiophene π-conjugated bridge. The geometric structures, electronic structure, excited state properties, aromaticity, and the static- and frequency-dependent second hyperpolarizabilities were investigated by employing high-precision density functional theory (DFT) calculations with an aug-cc-pVDZ basis set. As a result, the three compounds with the longest conjugation length exhibit a smaller energy gap (Egap), larger UV-vis absorption coefficient, and response range, which are the three strongest third-order nonlinear optical (NLO) response properties in this work. This work systematically explored the connection between molecular structure and NLO response, which provides a rational design strategy for high-performance organic NLO materials.

3.
ACS Appl Mater Interfaces ; 14(7): 9386-9397, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35148049

RESUMEN

A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).

4.
ACS Appl Mater Interfaces ; 14(5): 6945-6957, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35081710

RESUMEN

Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.

5.
ACS Appl Mater Interfaces ; 13(9): 11117-11124, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33635064

RESUMEN

Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.

6.
Polymers (Basel) ; 12(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106540

RESUMEN

Two two-dimensional (2D) donor-acceptor (D-A) type conjugated polymers (CPs), namely, PBDT-TVT-BT and PBDT-TVT-FBT, in which two ((E)-(4,5-didecylthien-2-yl)vinyl)- 5-thien-2-yl (TVT) side chains were introduced into 4,8-position of benzo[1,2-b:4,5-b']dithiophene (BDT) to synthesize the highly conjugated electron-donating building block BDT-TVT, and benzothiadiazole (BT) and/or 5,6-difluoro-BT as electron-accepting unit, were designed to systematically ascertain the impact of fluorination on thermal stability, optoelectronic property, and photovoltaic performance. Both resultant copolymers exhibited the lower bandgap (1.60 ~ 1.69 eV) and deeper highest occupied molecular orbital energy level (EHOMO, -5.17 ~ -5.37 eV). It was found that the narrowed absorption, deepened EHOMO and weakened aggregation in solid film but had insignificant influence on thermal stability after fluorination in PBDT-TVT-FBT. Accordingly, a PBDT-TVT-FBT-based device yielded 16% increased power conversion efficiency (PCE) from 4.50% to 5.22%, benefited from synergistically elevated VOC, JSC, and FF, which was mainly originated from deepened EHOMO, increased µh, µe, and more balanced µh/µe ratio, higher exciton dissociation probability and improved microstructural morphology of the photoactive layer as a result of incorporating fluorine into the polymer backbone.

7.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046028

RESUMEN

Two random conjugated polymers (CPs), namely, PIDTT-TBT and PIDTT-TFBT, in which indacenodithieno[3,2-b]thiophene (IDTT), 3-octylthiophene, and benzothiadiazole (BT) were in turn utilized as electron-donor (D), π-bridge, and electron-acceptor (A) units, were synthesized to comprehensively analyze the impact of reducing thiophene π-bridge and further fluorination on photostability and photovoltaic performance. Meanwhile, the control polymer PIDTT-DTBT with alternating structure was also prepared for comparison. The broadened and enhanced absorption, down-shifted highest occupied molecular orbital energy level (EHOMO), more planar molecular geometry thus enhanced the aggregation in the film state, but insignificant impact on aggregation in solution and photostability were found after both reducing thiophene π-bridge in PIDTT-TBT and further fluorination in PIDTT-TFBT. Consequently, PIDTT-TBT-based device showed 185% increased PCE of 5.84% profited by synergistically elevated VOC, JSC, and FF than those of its counterpart PIDTT-DTBT, and this improvement was chiefly ascribed to the improved absorption, deepened EHOMO, raised µh and more balanced µh/µe, and optimized morphology of photoactive layer. However, the dropped PCE was observed after further fluorination in PIDTT-TFBT, which was mainly restricted by undesired morphology for photoactive layer as a result of strong aggregation even if in the condition of the upshifted VOC. Our preliminary results can demonstrate that modulating the π-bridge in polymer backbone was an effective method with the aim to enhance the performance for solar cell.

8.
ACS Appl Mater Interfaces ; 12(7): 8475-8484, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31965782

RESUMEN

Ternary copolymerization strategy is considered an effective method to achieve high-performance photovoltaic conjugated polymers. Herein, a donor-acceptor1-donor-acceptor2-type random copolymer, named PBDTNS-TZ-BDD (T1), containing one electron-rich unit alkylthionaphthyl-flanked benzo[1,2-b/4,5-b'] di-thiophene (BDTNS) as D and two electron-deficient moieties benzo[1,2-c/4,5-c']dithiophene-4,8-dione (BDD) and fluorinated benzotriazole as A, was synthesized to investigate the excitonic dynamic effect. Also, the D-A-type alternating copolymer PBDTNS-BDD (P1) was also prepared for a clear comparison. Although the UV-Vis spectra and energy levels of P1 and T1 are similar, the power conversion efficiencies (PCEs) of the related devices are 11.50% (T1/ITIC) and 8.89% (P1/ITIC), respectively. The reason for this is systematically investigated and analyzed by theoretical calculation, photoluminescence, and pump-probe transient absorption spectroscopy. The density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculation results show that the terpolymer T1 with a lower exciton binding energy and a longer lifetime of spontaneous luminescence can synergistically increase the number of excitons reaching the donor/acceptor interface. The results of the pump-probe transient absorption spectroscopy show that the yield of charge separation of T1/ITIC is higher than that of the P1/ITIC blend film, and improved PCE could be achieved via copolymerization strategies. Moreover, the fabrication of the T1-based device is also simple without any additive or postprocessing. Therefore, it provides a promising and innovative method to design high-performance terpolymer materials.

9.
Polymers (Basel) ; 11(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500164

RESUMEN

A novel (E)-5-(2-(5-alkylthiothiophen-2-yl)vinyl)thien-2-yl (TVT)-comprising benzo[1,2-b:4,5-b']dithiophene (BDT) derivative (BDT-TVT) was designed and synthetized to compose two donor-acceptor (D-A) typed copolymers (PBDT-TVT-ID and PBDT-TVT-DTNT) with the electron-withdrawing unit isoindigo (ID) and naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NT), respectively. PBDT-TVT-ID and PBDT-TVT-DTNT showed good thermal stability (360 °C), an absorption spectrum from 300 nm to 760 nm and a relatively low lying energy level of Highest Occupied Molecular Orbital (EHOMO) (-5.36 to -5.45 eV), which could obtain a large open-circuit voltage (Voc) from photovoltaic devices with PBDT-TVT-ID or PBDT-TVT-DTNT. The photovoltaic devices with ITO/PFN/polymers: PC71BM/MoO3/Ag structure were assembled and exhibited a good photovoltaic performance with a power conversion efficiency (PCE) of 4.09% (PBDT-TVT-ID) and 5.44% (PBDT-TVT-DTNT), respectively. The best PCE of a PBDT-TVT-DTNT/PC71BM-based device mainly originated from its wider absorption, higher hole mobility and favorable photoactive layer morphology.

10.
Polymers (Basel) ; 11(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30960223

RESUMEN

Side chain engineering has been an effective approach to modulate the solution processability, optoelectronic properties and miscibility of conjugated polymers (CPs) for organic/polymeric photovoltaic cells (PVCs). As compared with the most commonly used method of introducing alkyl chains, the employment of alkyl-substituted aryl flanks would provide two-dimensional (2-D) CPs having solution processability alongside additional merits like deepened highest occupied molecular orbital (HOMO) energy levels, increased absorption coefficient and charger transporting, etc. In this paper, the triple C≡C bond was used as conjugated linker to decrease the steric hindrance between the flanks of 4,5-didecylthien-2-yl (T) and dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (DTBDT) core. In addition, an alternating CP derived from 4,5-didecylthien-2-yl-ethynyl (TE) flanked DTBDT, and 4,9-bis(4-octylthien-2-yl) naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (DTNT), named as PDTBDT-TE-DTNT, was synthesized and characterized. As compared with the controlled PDTBDT-T-DTNT, which was derived from 4,5-didecylthien-2-yl flanked DTBDT and DTNT, the results for exciton dissociation probability, density functional theory (DFT), time-resolved photoluminescence (PL) measurements, etc., revealed that the lower steric hindrance between TE and DTBDT might lead to the easier rotation of the TE flanks, thus contributing to the decrease of the exciton lifetime and dissociation probability, finally suppressing the short-circuit current density (JSC), etc., of the photovoltaic devices from PDTBDT-TE-DTNT.

11.
ACS Appl Mater Interfaces ; 11(7): 7022-7029, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30688062

RESUMEN

To understand the vertical phase separation in the bulk junction active layer of organic photovoltaic devices is essential for controlling the charge transfer behavior and achieving effective charge collection. Here, diphenyl sulfide (DPS) was introduced as a novel additive into the PTB7-Th:PC71BM-based inverted polymer solar cells (PSCs), and the effect of additives on active blend films and photovoltaic characteristics was carefully studied. The results show that DPS could not only modulate the vertical composition distribution but also promote the ordered molecular packing of the photoactive layer, thus effectively improving exciton dissociation, charge transport, and collection, and thus exhibit an excellent power conversion efficiency of 9.7% with an improved fill factor (>70%) after using 3% DPS additive. The results show that the DPS solvent additive can effectively adjust the vertical phase distribution and crystallinity of blend films and improve the photovoltaic performance of the inverted organic photovoltaic devices.

12.
Methods Mol Biol ; 1821: 131-140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30062409

RESUMEN

Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that T108 within the 106PNTP109 motif of Rac1 is likely an ERK phosphorylation site and Rac1 also has an ERK docking site 183KKRKRKCLLL192 (D-site) at the C-terminus. Protein phosphorylation could be assayed by many different methods. Here, we describe an in vitro kinase assay we used to assess Rac1 phosphorylation by ERK. Rac1 phosphorylation is detected based on the transfer of a radiolabeled phosphate from ATP to Rac1 by the phosphotransferase activity of the kinase EKR. This in vitro kinase assay uses commercially available purified active ERK. Substrate Rac1 was generated and purified as a glutathione S-transferase (GST) fusion protein. [γ-32P]ATP is used to radiolabel Rac1. Phosphorylation of Rac1 is viewed by autoradiography.


Asunto(s)
Adenosina Trifosfato/química , Quinasas MAP Reguladas por Señal Extracelular/química , Proteína de Unión al GTP rac1/química , Secuencias de Aminoácidos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Marcaje Isotópico/métodos , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
13.
Nanoscale Res Lett ; 13(1): 184, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29926214

RESUMEN

It has been reported that the performance of bulk heterojunction organic solar cells can be improved by incorporation of nano-heterostructures of metals, semiconductors, and dielectric materials in the active layer. In this manuscript, CdS or Sb2S3 nanocrystals were in situ generated inside the poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid (P3HT:PC61BM) system by randomly mixing P3HT and PC61BM in the presence of cadmium or antimony xanthate precursor. Hybrid solar cells (HSCs) with the configurations of tin-doped indium oxide substrate (ITO)/CdS interface layer/P3HT:PC61BM: x wt.% CdS/MoO3/Ag and ITO/CdS interface layer /P3HT:PC61BM: x wt.% Sb2S3/MoO3/Ag were fabricated. Hybrid active layers (P3HT:PC61BM: x wt.% CdS or P3HT:PC61BM: x wt.% Sb2S3) were formed completely by thermally annealing the film resulting in the decomposition of the cadmium or antimony xanthate precursor to CdS or Sb2S3 nanocrystals, respectively. The effects of x wt.% CdS (or Sb2S3) nanocrystals on the performance of the HSCs were studied. From UV-Vis absorption, hole mobilities, and surface morphological characterizations, it has been proved that incorporation of 3 wt.% CdS (or Sb2S3) nanocrystals in the active layer of P3HT:PC61BM-based solar cells improved the optical absorption, the hole mobility, and surface roughness in comparison with P3HT:PC61BM-based solar cells, thus resulting in the improved power conversion efficiencies (PCEs) of the devices.

14.
BMC Cancer ; 18(1): 238, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490608

RESUMEN

BACKGROUND: Targeted therapy with trastuzumab has become a mainstay for HER2-positive breast cancer without a clear understanding of the mechanism of its action. While many mechanisms have been suggested for the action of trastuzumab, most of them are not substantiated by experimental data. It has been suggested that trastuzumab functions by inhibiting intracellular signaling initiated by HER2, however, the data are very controversial. A major issue is the different cellular background of various breast cancer cells lines used in these studies. Each breast cancer cell line has a unique expression profile of various HER receptors, which could significantly affect the effects of trastuzumab. METHODS: To overcome this problem, in this research we adopted a cell model that allow us to specifically examine the effects of trastuzumab on a single HER receptor without the influence of other HER receptors. Three CHO cell lines stably expressing only human EGFR (CHO-EGFR), HER2 (CHO-K6), or HER3 (CHO-HER3) were used. Various methods including cytotoxicity assay, immunoblotting, indirect immunofluorescence, cross linking, and antibody-dependent cellular cytotoxicity (ADCC) were employed in this research. RESULTS: We showed that trastuzumab did not bind EGFR and HER3, and thus did not affect the homodimerization and phosphorylation of EGFR and HER3. However, overexpression of HER2 in CHO cells, in the absence of other HER receptors, resulted in the homodimerization of HER2 and the phosphorylation of HER2 at all major pY residues. Trastuzumab bound to HER2 specifically and with high affinity. Trastuzumab inhibited neither the homodimerization of HER2, nor the phosphorylation of HER2 at most phosphotyrosine residues. Moreover, trastuzumab did not inhibit the phosphorylation of ERK and AKT in CHO-K6 cells, and did not inhibit the proliferation of CHO-K6 cells. However, trastuzumab induced strong ADCC in CHO-K6 cells. CONCLUSION: We concluded that, in the absence of other HER receptors, trastuzumab exerts its antitumor activity through the induction of ADCC, rather than the inhibition of HER2-homodimerization and phosphorylation.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Receptor ErbB-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trastuzumab/farmacología , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Células CHO , Cricetulus , Receptores ErbB/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Fosforilación , Multimerización de Proteína , Receptor ErbB-2/metabolismo , Receptor ErbB-3/efectos de los fármacos , Receptor ErbB-3/metabolismo , Trastuzumab/uso terapéutico
15.
Int J Mol Med ; 41(6): 3327-3341, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29512687

RESUMEN

The main actions of metformin are as follows: To reduce hyperglycemia via the suppression of gluconeogenesis, improve glucose uptake and insulin sensitivity, and stimulate activation of adenosine monophosphate­activated protein kinase during the treatment of diabetes mellitus. It is well known that metformin acts via complex mechanisms, including multitarget and multipathway mechanisms; however, the multitargeted antidiabetic genes of metformin remain obscure. The present study aimed to perform transcriptomic and proteomic analysis of potential therapeutic target genes in the liver of metformin­treated Sprague­Dawley rats with type 2 diabetes mellitus. The type 2 diabetes rat model was established using streptozotocin. Fasting blood glucose, hemoglobin A1c, serum insulin and biological parameters were subsequently measured. Differentially expressed genes (DEGs) and proteins were identified in the rat livers by expression profile analysis and isobaric tags for relative and absolute quantitation (iTRAQ). A 1.5­fold alteration in gene expression, as determined using chip­based expression profile analysis, and a 1.2­fold alteration in protein expression, as determined using iTRAQ, were considered physiologically significant benchmarks, which were used to identify DEGS in metformin­treated rats with type 2 diabetes mellitus. The DEGs were verified using quantitative polymerase chain reaction (qPCR) and western blot analysis. Numerous hepatic genes involved in various metabolic pathways were affected by metformin; in particular, genes associated with lipid metabolism were markedly affected. Expression profile analysis and iTRAQ analysis suggested that carboxylesterase 1C subunit (Ces1C) and cholesterol 7α­hydroxylyase (Cyp7a1) may serve as important DEGs, which were validated by qPCR and western blot analysis. Ces1C and Cyp7a1 are the main enzymes in cholesterol metabolism, yet the result of western blotting was not consistent with qPCR. The present study demonstrated that metformin may affect the expression of numerous hepatic genes involved in metabolic pathways, particularly the lipid and cholesterol metabolic pathways. Ces1C and Cyp7a1 may be considered novel therapeutic target genes in the liver, which are involved in the antidiabetic effects of metformin.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Metformina/uso terapéutico , Proteómica/métodos , Transcriptoma/genética , Animales , Carboxilesterasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Hemoglobina Glucada/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
16.
Polymers (Basel) ; 11(1)2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30959996

RESUMEN

Three alternated D-π-A type 5,10-bis(triisopropylsilylethynyl)dithieno[2,3-d:2',3'-d']-benzo[1,2-b:4,5-b']dithiophene (DTBDT-TIPS)-based semiconducting conjugated copolymers (CPs), PDTBDT-TIPS-DTBT-OD, PDTBDT-TIPS-DTFBT-OD, and PDTBDT-TIPS-DTNT-OD, bearing different A units, including benzothiadiazole (BT), 5,6-difluorinated-BT (FBT) and naphtho[1,2-c:5,6-c']-bis[1,2,5]thiadiazole (NT), were designed and synthesized to investigate the impact of the variation in electron-deficient units on the properties of these photovoltaic polymers. It was exhibited that the down-shifted highest occupied molecular orbital energy level (EHOMO), the enhanced aggregation in both the chlorobenzene solution and the solid film, as well as the better molecular planarity, were achieved using methods involving fluorination and the replacement of BT with NT on the polymer backbone. The absorption profile was little changed upon fluorination; however, it was greatly broadened during replacement of BT with NT. Consequently, the optimized photovoltaic device based on the PDTBDT-TIPS-DTNT-OD exhibited synchronous enhancements in the open-circuit voltage (VOC) of 0.88 V, the short-circuit current density (JSC) of 7.21 mA cm-2, and the fill factor (FF) of 52.99%, resulting in a drastic elevation in the PCE by 129% to 3.37% compared to that of the PDTBDT-TIPS-DTBT-OD. This was triggered by PDTBDT-TIPS-DTNT-OD's broadened absorption, deepened EHOMO, improved coplanarity, and enhanced SCLC mobility (which increased 3.9 times), as well as a favorable morphology of the active layer. Unfortunately, the corresponding PCE deteriorated after incorporating fluorine into the BT, due to the oversized aggregation and large phase separation morphology in the blend films, severely impairing its JSC. Our preliminary results demonstrated that the replacement of BT with NT in a D-π-A type polymer backbone was an effective strategy of tuning the molecular structure to achieve highly efficient polymer solar cells (PSCs).

17.
Methods Mol Biol ; 1652: 159-163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791642

RESUMEN

Wound healing assays are well-defined and low-cost assays to study cell proliferation and migration rates of different cells and culture conditions as well as cell polarity, tissue matrix remodeling, and actin cytoskeletal structure regulation. The assay procedure generally involves growing a confluent cell monolayer and then creating a wound by scratching a line through the monolayer to destroy or displace certain cells. The open gap created by this wound is healed as cells move in and fill the damaged area. This wound healing process can take several hours to days depending on the cell type, culture conditions, and the width of the wound. The healing process is investigated microscopically over certain time intervals as the cells move into the open gap and close the wound.


Asunto(s)
Bioensayo/métodos , Movimiento Celular , Receptores ErbB/metabolismo , Cicatrización de Heridas , Animales , Células COS , Movimiento Celular/efectos de los fármacos , Chlorocebus aethiops , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Imagen Molecular , Estadística como Asunto
18.
ACS Appl Mater Interfaces ; 9(12): 10937-10945, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28276681

RESUMEN

The photovoltaic cells (PVCs) from conjugated copolymers of PDTBDT-BT and PDTBDT-FBT with 5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as electron donor moieties and benzothiadiazole and/or 5,6-difluorobenzothiadiazole as electron acceptor moieties are optimized by employing alcohol-soluble PFN (poly(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) as cathode modification interlayer. The power conversion efficiencies (PCEs) of inverted PVCs (i-PVCs) from PDTBDT-BT and PDTBDT-FBT with devices configuration as ITO/PFN/active layer/MoO3/Ag are increased from 4.97% to 8.54% and 5.92% to 8.74%, in contrast to those for the regular PVCs (r-PVCs) with devices configuration as ITO/PEDOT:PSS/active layer/Ca/Al under 100 mW/cm2 AM 1.5 illumination. The optical modeling calculations and X-ray photoelectron spectroscopy (XPS) investigations reveal that the r-PVCs and i-PVCs from the copolymers exhibit similar light harvesting characteristics, and the enhancements of the PCEs of the i-PVCs from the copolymers are mainly contributed to the favorable vertical phase separation as the strongly polymer-enriched top surface layers and slightly PC71BM (phenyl-C71-butyric acid methyl ester)-enriched bottom surface layers are correspondingly connected to the anodes and cathodes of the i-PVCs, while they are opposite in the r-PVCs. As we known, it is the first time to experimentally verify that the i-PVCs with alcohol-soluble conjugated polymers cathode modification layers enjoy favorable vertical phase separation.

19.
Phytother Res ; 30(5): 823-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26888689

RESUMEN

The present study aimed to evaluate the pathogenesis of type 2 diabetes mellitus (T2DM) and the anti-diabetic effect of berberine in Zucker diabetic fatty (ZDF) rats. A urinary metabolomics analysis was performed with ultra-performance liquid chromatography/electrospray ionization synapt high-definition mass spectrometry. Pattern recognition approaches were integrated to discover differentiating metabolites. We identified 29 ions (13 in negative mode and 16 in positive mode) as 'differentiating metabolites' with this metabolomic approach. A functional pathway analysis revealed that the alterations were mainly associated with glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions and sphingolipid metabolism. These results indicated that the dysfunctions of glycometabolism and lipometabolism are involved in the pathological process of T2DM. Berberine could decrease the serum levels of glycosylated hemoglobin, total cholesterol and triglyceride and increase the secretion of insulin. The urinary metabolomics analysis showed that berberine could reduce the concentrations of citric acid, tetrahydrocortisol, ribothymidine and sphinganine to a near-normal state. These results suggested that the anti-diabetic effect of berberine occurred mainly via its regulation of glycometabolism and lipometabolism and activation of adenosine 5'-monophosphate-activated protein kinase. Our work not only provides a better understanding of the anti-diabetic effect of berberine in ZDF rats but also supplies a useful database for further study in humans and for investigating the pharmacological actions of drugs. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Berberina/química , Berberina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Metabolómica/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Humanos , Masculino , Ratas , Ratas Zucker
20.
PLoS One ; 11(1): e0147103, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26816343

RESUMEN

The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Animales , Células COS , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoesqueleto/metabolismo , Humanos , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...