Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(8): 107446, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599822

RESUMEN

Nephronophthisis-like nephropathy-1 (NPHPL1) is a rare ciliopathy, caused by mutations of XPNPEP3. Despite a well-described monogenic etiology, the pathogenesis of XPNPEP3 associated with mitochondrial and ciliary function remains elusive. Here, we identified novel compound heterozygous mutations in NPHPL1 patients with renal lesion only or with extra bone cysts together. Patient-derived lymphoblasts carrying c.634G>A and c.761G>T together exhibit elevated mitochondrial XPNPEP3 levels via the reduction of mRNA degradation, leading to mitochondrial dysfunction in both urine tubular epithelial cells and lymphoblasts from patient. Mitochondrial XPNPEP3 was co-immunoprecipitated with respiratory chain complex I and was required for the stability and activity of complex I. Deletion of Xpnpep3 in mice resulted in lower activity of complex I, elongated primary cilium, and predisposition to tubular dilation and fibrosis under stress. Our findings provide valuable insights into the mitochondrial functions involved in the pathogenesis of NPHP.

2.
Front Neurol ; 13: 1040087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504669

RESUMEN

Background: Abnormal brain development is common in children with cerebral palsy (CP), but there are no recent reports on the actual brain age of children with CP. Objective: Our objective is to use the brain age prediction model to explore the law of brain development in children with CP. Methods: A two-dimensional convolutional neural networks brain age prediction model was designed without segmenting the white and gray matter. Training and testing brain age prediction model using magnetic resonance images of healthy people in a public database. The brain age of children with CP aged 5-27 years old was predicted. Results: The training dataset mean absolute error (MAE) = 1.85, r = 0.99; test dataset MAE = 3.98, r = 0.95. The brain age gap estimation (BrainAGE) of the 5- to 27-year-old patients with CP was generally higher than that of healthy peers (p < 0.0001). The BrainAGE of male patients with CP was higher than that of female patients (p < 0.05). The BrainAGE of patients with bilateral spastic CP was higher than those with unilateral spastic CP (p < 0.05). Conclusion: A two-dimensional convolutional neural networks brain age prediction model allows for brain age prediction using routine hospital T1-weighted head MRI without segmenting the white and gray matter of the brain. At the same time, these findings suggest that brain aging occurs in patients with CP after brain damage. Female patients with CP are more likely to return to their original brain development trajectory than male patients after brain injury. In patients with spastic CP, brain aging is more serious in those with bilateral cerebral hemisphere injury than in those with unilateral cerebral hemisphere injury.

3.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35472031

RESUMEN

Inherited kidney diseases are the fifth most common cause of end-stage renal disease (ESRD). Mitochondrial dysfunction plays a vital role in the progression of inherited kidney diseases, while mitochondrial-transfer RNA (mt-tRNA) variants and their pathogenic contributions to kidney disease remain largely unclear. In this study, we identified the pathogenic mt-tRNAPhe 616T>C mutation in 3 families and documented that m.616T>C showed a high pathogenic threshold, with both heteroplasmy and homoplasmy leading to isolated chronic kidney disease and hyperuricemia without hematuria, proteinuria, or renal cyst formation. Moreover, 1 proband with homoplamic m.616T>C presented ESRD as a child. No symptoms of nervous system evolvement were observed in these families. Lymphoblast cells bearing m.616T>C exhibited swollen mitochondria, underwent active mitophagy, and showed respiratory deficiency, leading to reduced mitochondrial ATP production, diminished membrane potential, and overproduction of mitochondrial ROS. Pathogenic m.616T>C abolished a highly conserved base pair (A31-U39) in the anticodon stem-loop which altered the structure of mt-tRNAPhe, as confirmed by a decreased melting temperature and slower electrophoretic mobility of the mutant tRNA. Furthermore, the unstable structure of mt-tRNAPhe contributed to a shortage of steady-state mt-tRNAPhe and enhanced aminoacylation efficiency, which resulted in impaired mitochondrial RNA translation and a significant decrease in mtDNA-encoded polypeptides. Collectively, these findings provide potentially new insights into the pathogenesis underlying inherited kidney disease caused by mitochondrial variants.


Asunto(s)
Hiperuricemia , Fallo Renal Crónico , Insuficiencia Renal Crónica , Niño , Humanos , Hiperuricemia/genética , Hiperuricemia/patología , Fallo Renal Crónico/genética , Fallo Renal Crónico/patología , Mitocondrias/genética , Mitocondrias/patología , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología
4.
Acta Physiol (Oxf) ; 232(1): e13634, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33615732

RESUMEN

AIMS: Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. BASP1 (brain acid-soluble protein) is up-regulated in podocyte-specific protein phosphatase 2A knockout mice (Pod-PP2A-KO) that develop kidney dysfunction. Here, we explore the role of BASP1 for podocytes in DN. METHODS: BASP1 was assessed in kidneys from DN patients and DN mouse models, podocyte specific BASP1 knockout mice (Pod-BASP1-KO mice) were generated and studied in vivo. Furthermore, podocyte injury and apoptosis were measured after BASP1 knockdown and overexpression in a mouse podocyte cell line (MPC5). Potential signalling pathways involved in podocyte apoptosis were detected. RESULTS: BASP1 expression was up-regulated in DN patients compared to normal controls. BASP1 specific deletion in podocytes protected against podocyte injury by reducing the loss of expression of slit diaphragm molecules and foot process effacement in the DN model. BASP1 promoted actin cytoskeleton rearrangements and apoptosis in the MPC5 podocyte line. Molecules involved in the p53 pathway were down-regulated in BASP1 knockdown podocytes treated with high glucose compared to controls. BASP1 promoted podocyte apoptosis and P53 pathway activation through co-repression with Wilms' tumour 1 transcription factor (WT1). CONCLUSION: BASP1 activates the p53 pathway through modulation of WT1 to induce podocyte apoptosis in diabetic nephropathy.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Diabetes Mellitus , Nefropatías Diabéticas , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Podocitos , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas WT1/metabolismo , Animales , Apoptosis , Proteínas de Unión a Calmodulina/química , Proteínas del Citoesqueleto/química , Humanos , Proteínas de la Membrana/química , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Podocitos/metabolismo , Proteínas Represoras/química , Proteína p53 Supresora de Tumor/química , Proteínas WT1/química
5.
Children (Basel) ; 9(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35053631

RESUMEN

BACKGROUND: Hyperuricemia is increasingly recognized as a risk factor for chronic kidney disease (CKD) just in adults. The purpose of this study was to investigate the clinical characteristics of hyperuricemia and its associated factors in Chinese children with CKD at a single center. METHODS: A cross-sectional study of 170 CKD children collected from the Department of Nephrology, The Zhejiang University Children's Hospital was conducted. The clinical data, including anthropometric data, blood pressure measurements, and biochemical parameters, were recorded and analyzed retrospectively. The factors associated with hyperuricemia in CKD children were evaluated by Pearson and Spearman correlation analysis and multiple logistic regression analysis. RESULTS: The mean age was 9.79 ± 4.10 years, and 72 (42.35%) were girls. Higher blood urea nitrogen (BUN), serum creatinine, cystatin C, D-dimer, lower hemoglobin, albumin, and estimated glomerular filtration rate (eGFR) were significantly associated with higher serum uric acid (SUA). In multiple logistic regression analysis, anemia and higher BUN were both positively associated factors, whereas eGFR ≥ 90 mL/min/1.73 m2 was a negatively associated factor for subjects with SUA ≥ 390 µmol/L (6.5 mg/dL). CONCLUSIONS: SUA was significantly associated with kidney risk factors in CKD children. Monitoring and controlling SUA, Hb, BUN, and Scr levels in CKD children may help to prevent the progression of CKD.

6.
Front Med (Lausanne) ; 8: 743150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977057

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is a severe renal cystic disease caused mainly by the polycystic kidney and hepatic disease 1 (PKHD1). However, the genetic cause, pathologic features, and mechanism of action of ARPKD are not well known. Here, we identified a family with ARPKD. Two siblings harbored biallelic variants in PKHD1 (c.7205G>A, c.7973T>A). We determined that the "de novo" variant, c.7205G>A, arose from the mosaicism of the father and had a 7.4% level. Pathologic characterization, using biopsy analysis, was evidenced with predominant cystic dilation in proximal tubules, slight ectasia of collecting ducts, defective ciliogenesis, and impaired cell-cell junctions in renal tubules and collecting ducts. Exosome proteomics in the urine from patients with ARPKD were markedly different from those of controls, with the most significant alterations occurring in mitochondrial and lysosomal proteins. Expression of the proteins of OXPHOS was downregulated sharply, in parallel with upregulated expression of the proteins involved in glycolysis in patients with ARPKD. Several lysosomal proteins associated with renal lesions were more abundant in the exosome of the patient than in controls. Moreover, the lysosomal enzyme sulfamidase, which is produced by the SGSH gene, was abrupt uniquely in the exosome of the patient. Consistently, swollen mitochondria and abundant lysosomes were visualized in the mutant tubular epithelial cells of patients with mutant PKHD1. Collectively, these findings provide new insights on the pathophysiology of the polycystic kidney due to PKHD1 deficiency. PKHD1 mosaicism should be considered in genetic testing of ARPKD patients.

7.
Technol Cancer Res Treat ; 19: 1533033820957026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33089764

RESUMEN

BACKGROUND: In recent years, accumulating studies have found that circular RNA (circRNA) exerts a great effect on tumor progression. Circ_0000215, a novel circRNA, remains largely unknown in terms of its effect and mechanism in glioma. METHOD: Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to detect the expressions of circ_0000215, miR-495-3p and CXCR2 in human glial cell line HEB and glioma cell lines (A172, U251, U87, SHG-44, LN-18), human glioma tissues and adjacent healthy tissues. Gain- and loss-assays of circ_0000215 were conducted. Cell proliferation ability was detected via the CCK8 assay, and cell invasion ability was examined by Transwell assay. CXCR2 expression was evaluated via RT-PCR and Western blot. Moreover, bioinformatics was applied to analyze the targeting molecules of circ_0000215 and CXCR2. Verification of the relationship between these molecules were supported through the dual-luciferase reporter gene and RNA immunocoprecipitation (RIP) assay. RESULTS: Circ_0000215 and CXCR2 were remarkably upregulated in glioma tissues and cells. Overexpression of circ_0000215 notably promoted the proliferation, invasion and epithelial-mesenchymal transition (EMT) but inhibited apoptosis of glioma cells, while knocking down circ_0000215 had the opposite effects. Additionally, miR-495-3p, a sponge RNA of circ_0000215, inhibited the growth, invasion and EMT of glioma cells. Mechanistically, miR-495-3p targeted CXCR2 and negatively regulated CXCR2/PI3K/Akt pathway. However, the effects of miR-495-3p were all dampened by overexpression of circ_0000215. CONCLUSION: These data demonstrated that circ_0000215 functions as a competitive endogenous RNA by sponging miR-495-3p, thus accelerating glioma progression through CXCR2 axis.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , MicroARNs/genética , ARN Circular/genética , Receptores de Interleucina-8B/biosíntesis , Apoptosis/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/mortalidad , Glioma/patología , Humanos , Neuroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...