Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175116, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39084387

RESUMEN

Many evidences have shown that both atmospheric and soil droughts can constrain vegetation growth and further threaten its ability to sequester carbon. However, the trigger thresholds of vegetation production loss under different atmospheric and soil drought conditions are still unknown. In this study, we proposed a Copula and Bayesian equations-based framework to investigate trigger thresholds of various vegetation production losses under different atmospheric and soil drought conditions. The trigger thresholds dynamics and their possible causes were also investigated. To achieve this goal, we first simulated the gross primary production, soil moisture, and vapor pressure deficit over China during 1961-2018 using an individual-based, spatially explicit dynamic global vegetation model. The main drivers of the dynamic change in trigger thresholds were then explored by Random Forest model. We found that soil drought caused greater stress on gross primary production loss than atmospheric drought, with a larger impact area and higher probability of damage. In terms of spatial distribution, the risk probability of gross primary production loss was higher in eastern China than in western China, and the drought trigger threshold was also smaller in eastern China. In addition, the trigger thresholds for atmospheric and soil drought in most regions exhibited a decreasing trend from 1961 to 2018, while the CO2 fertilization enhanced the drought tolerance of vegetation. The reduction in CO2 fertilization effect slowed down the downward trend of trigger threshold for soil drought, while the increase in temperature exacerbated the downward trend of trigger threshold for atmospheric drought. This study highlighted the larger effect of soil drought on vegetation production loss than atmospheric drought and implied that climate change can modulate the trigger threshold of vegetation production losses under drought conditions. These findings provide scientific guidance for managing the increasing risk of drought on vegetation and optimizing watershed water allocation.


Asunto(s)
Atmósfera , Cambio Climático , Sequías , Suelo , China , Suelo/química , Atmósfera/química , Desarrollo de la Planta , Teorema de Bayes , Secuestro de Carbono
2.
J Environ Manage ; 342: 118077, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209643

RESUMEN

One critical question for water security and sustainable development is how water quality responses to the changes in natural factors and human activities, especially in light of the expected exacerbation in water scarcity. Although machine learning models have shown noticeable advances in water quality attribution analysis, they have limited interpretability in explaining the feature importance with theoretical guarantees of consistency. To fill this gap, this study built a modelling framework that employed the inverse distance weighting method and the extreme gradient boosting model to simulate the water quality at grid scale, and adapted the Shapley additive explanation to interpret the contributions of the drivers to water quality over the Yangtze River basin. Different from previous studies, we calculated the contribution of features to water quality at each grid within river basin and aggregated the contribution from all the grids as the feature importance. Our analysis revealed dramatic changes in response magnitudes of water quality to drivers within river basin. Air temperature had high importance in the variability of key water quality indicators (i.e. ammonia-nitrogen, total phosphorus, and chemical oxygen demand), and dominated the changes of water quality in Yangtze River basin, especially in the upstream region. In the mid- and downstream regions, water quality was mainly affected by human activities. This study provided a modelling framework applicable to robustly identify the feature importance by explaining the contribution of features to water quality at each grid.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Humanos , Efectos Antropogénicos , Ríos , Análisis de la Demanda Biológica de Oxígeno
3.
Sci Total Environ ; 870: 161613, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36646215

RESUMEN

River receive substantial nutrient inputs, and serve as the main channel for nitrogen and phosphorus to enter the lake, their nutrient control is of great significance to the alleviation of lake eutrophication. While nutrient limitation affects the primary productivity of water ecosystems and the biodiversity of aquatic communities, identifying the limiting factors in riverine ecosystems across China remains elusive. Here, we explore which nutrients have a stronger effect on nutritional balance and aquatic ecosystems in China's rivers based on the total nitrogen (TN) and total phosphorus (TP) observations from 1412 sampling sites in 2018. This study supports the following three main conclusions. Though the percentages of the sites with TN or TP exceeding the limits varied as per different mesotrophic targets, and TP (53.7 %) contributed more to nutrient enrichment than TN (46.3 %). In addition, the spatial distribution characteristics of river nutrients were high in the north (arid zone) and low in the south (humid zone) in China. According to four classification criteria of N:P ratio, 70.8 % of the sampling sites were attributed to phosphorus limiting, much higher than the sites with nitrogen limiting (4.1 %). TN and TP have a synergistic effect on river nutrients, while TP has a stronger regulation framework. Our results reveal that the nutrients in China's rivers are mainly phosphorus limiting, which implies that phosphorus-oriented best management practices are more likely to maintain the nutrient balance of rivers towards healthy aquatic ecosystems. Synopsis: Phosphorus is the key factor that affecting the stability and nutrient balance of riverine ecosystem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA